Modeling and design of V-shaped piezoelectric vibration energy harvester with stopper for low-frequency broadband and shock excitation

被引:32
|
作者
Jiang, Weile [1 ,2 ,3 ]
Wang, Lu [4 ,5 ]
Zhao, Libo [4 ,5 ]
Luo, Guoxi [4 ,5 ]
Yang, Ping [4 ,5 ]
Ning, Shaobo [2 ]
Lu, Dejiang [4 ,5 ]
Lin, Qijing [4 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Humanities & Social Sci, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Heritage Sites & Hist Architecture Conservat, Xian 710049, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Architecture, Xian 710055, Peoples R China
[4] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Int Joint Lab Micro Nano Mfg & Measurement Techno, Xian 710049, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
V-shaped beam; Energy harvesting; PZT bimorph; Broadband low-frequency; Biomechanical shock; HIGH-POWER; OUTPUT; BEAM;
D O I
10.1016/j.sna.2020.112458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Broadband low-frequency vibration and shock energies are ubiquitous such as biomechanical motion, which can be harvested to power wearable electronics. This paper proposes a compact design of V-shaped piezoelectric vibration energy harvester (V-PVEH) with impact stopper. To demonstrate V-PVEH having high power density, Euler beam model is proposed for qualitative comparison between V-PVEH and cantilevered piezoelectric vibration energy harvester (C-PVEH). FEA model in COMSOL for V-PVEH structure design is proposed especially for the stress check. Modal analysis, two bimorphs connection style, tip mass thickness, and acceleration amplitude are discussed in the experimental vibration validation. A peak voltage of 11.5 V at a low resonant frequency of 12 Hz and a maximum power of 0.442 mW are shown in experiments under the excitation of 0.1 g. A lumped parameters model with nonlinearity analysis for impact induced broadband and shock input is discussed comprehensively. The stopper design in V-PVEH can not only limit the vibration amplitude and prevent overload, but also form broadband of 8-15 Hz and generate large voltage output of 5-19 V when impact occurs at an acceleration of 0.4 g. Except for resonating excitation, biomechanical shock energy harvesting with ultra-low frequency of 1 Hz is testified for wearable V-PVEH to charge a 10 mu F capacitor to 10 V in 5 s by stamping feet. Above all, V-PVEH with stopper is believed to show good performance in broadband low-frequency vibration and biomechanical shock energy harvesting. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Design and Optimization of a Multimode Low-Frequency Piezoelectric Energy Harvester
    He, Longfei
    Narita, Fumio
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2022, 14 (04)
  • [22] Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed
    Zhao, Kaiyuan
    Zhang, Qichang
    Wang, Wei
    ENERGIES, 2019, 12 (24)
  • [23] A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration
    Wei, Xiaoxiang
    Zhao, Haibo
    Yu, Junjie
    Zhong, Yiming
    Liao, Yanlin
    Shi, Shiwei
    Wang, Peihong
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2021, 8 (05) : 1537 - 1550
  • [24] A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration
    Xiaoxiang Wei
    Haibo Zhao
    Junjie Yu
    Yiming Zhong
    Yanlin Liao
    Shiwei Shi
    Peihong Wang
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8 : 1537 - 1550
  • [25] High Performance Hybrid Piezoelectric-Electromagnetic Energy Harvester for Scavenging Energy From Low-Frequency Vibration Excitation
    Yang, Yun
    Cai, Tingting
    Xue, Shuping
    Song, Xiaoguang
    Cui, Xinai
    IEEE ACCESS, 2020, 8 : 206503 - 206513
  • [26] Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration
    Toyabur, R. M.
    Salauddin, M.
    Park, Jae Y.
    CERAMICS INTERNATIONAL, 2017, 43 : S675 - S681
  • [27] Development of Mechanical Coupling For Piezoelectric Energy Harvester Adapted to Low-Frequency Vibration
    Untoro, Tri
    Suprijanto
    Ekawati, Estiyanti
    2015 4TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATIONS, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING (ICICI-BME), 2015, : 134 - 137
  • [28] Modelling of Mechanical Coupling for Piezoelectric Energy Harvester Adapted to Low-Frequency Vibration
    Untoro, T.
    Viridi, S.
    Suprijanto
    Ekawati, E.
    INTERNATIONAL CONFERENCE ON ENERGY SCIENCES (ICES 2016), 2017, 877
  • [29] Multi-band piezoelectric vibration energy harvester for low-frequency applications
    Jaya Chandwani
    Rohit Somkuwar
    Raghavendra Deshmukh
    Microsystem Technologies, 2019, 25 : 3867 - 3877
  • [30] A piezoelectric-electromagnetic hybrid energy harvester for low-frequency impact vibration
    Fang, Jiwen
    Hu, Bing
    Jiang, Mingwei
    Li, Chong
    Lv, Mingming
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 614