Carbon Black Oxidized by Air Calcination for Enhanced H2O2 Generation and Effective Organics Degradation

被引:121
|
作者
Zhang, Haichuan [1 ,2 ,3 ,4 ]
Li, Yingjie [5 ]
Zhao, Yingshuang [1 ,2 ,3 ,4 ]
Li, Guanghe [1 ,2 ,3 ,4 ]
Zhang, Fang [1 ,2 ,3 ,4 ]
机构
[1] Natl Engn Lab Site Remediat Technol, Beijing 100015, Peoples R China
[2] Tsinghua Univ, Minist Educ China, Sch Environm, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Minist Educ China, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Minist Educ China, Key Lab Solid Waste Management & Environm Safety, Beijing 100084, Peoples R China
[5] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
oxidized carbon black; oxygen functional groups; two-electron oxygen reduction reaction; H2O2; production; electrochemical advanced oxidation processes; NITROGEN-DOPED CARBON; OXYGEN REDUCTION REACTION; PT/C CATALYTIC CATHODE; HYDROGEN-PEROXIDE; ELECTROCHEMICAL PROPERTIES; DURABILITY ENHANCEMENT; FUNCTIONAL-GROUPS; ELECTRODES; GRAPHITE; SURFACE;
D O I
10.1021/acsami.9b07765
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon black (CB) has a high conductivity and a large surface area, which are the basis of an excellent electrocatalyst. However, CB itself is usually less active or even inactive toward two-electron oxygen reduction reaction (2e(-) ORR) due to the absence of highly active functional groups with low oxygen content. To activate commercial CB for 2e(-) ORR, oxygen-containing functional groups were introduced onto the CB surface by a simple air calcination method. After the oxidation treatment at 600 degrees C (CB600), the oxygen content increased from the initial 1.17 +/- 0.15 to 4.08 +/- 0.60%, leading to a dramatic increase of the cathodic current from only -8.1 mA (CB) to -117.6 mA (CB600). The air cathode made of CB600 achieved the maximum H2O2 production of 517.7 +/- 2.4 mg L-1 within 30 min, resulting in the removal of similar to 91.1% rhodamine B in 2 min and an effective mineralization of similar to 76.3% in an electro-Fenton reactor. This performance was much better than that obtained using the CB catalyst (65.3 +/- 5.6 mg L-1 H2O2 production, and similar to 20.3% mineralization). This excellent activity of CB600 toward 2e(-) ORR was greatly improved by the introduction of O=C-OH and C-O-C groups. The successful improvement of the 2(e-)ORR activity of CB using air calcination enables its practical application in electrochemical advanced oxidation processes.
引用
收藏
页码:27846 / 27853
页数:8
相关论文
共 50 条
  • [31] Enhanced mechanism of AO7 degradation by electrochemical activation of persulfate at carbon felt and electrogenerated H2O2 carbon black-modified cathodes in divided cell
    Cai, Jingju
    Xie, Qingrong
    Ding, Ziyi
    Cao, Jingxiao
    Liu, Jiahao
    Xia, Jing
    Yang, Jixiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (12):
  • [32] Lignin-modified graphitic carbon nitride nanotubes for photocatalytic H2O2 production and degradation of brilliant black BN
    Zhu, Chen
    Xiao, Xinyu
    Wang, Xing
    Ma, Zihao
    Han, Ying
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 267
  • [33] Biosynthesis and Degradation of H2O2 by Vaginal Lactobacilli
    Martin, Rebeca
    Suarez, Juan E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (02) : 400 - 405
  • [34] Study for the oxidative degradation of cellooligosaccharides by H2O2
    Peng, Hong
    Lin, Lu
    Wang, Xiaoying
    Zhuang, Junping
    Pang, Chunsheng
    Luo, Xiaolin
    Ouyang, Pingkai
    Li, Jingjiang
    Liu, Shijie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237 : 22 - 22
  • [35] RADIATION DEGRADATION OF CHITOSAN IN THE PRESENCE OF H2O2
    彭静
    Chinese Journal of Polymer Science, 2004, (05) : 439 - 444
  • [36] Radiation degradation of chitosan in the presence of H2O2
    Lu, YH
    Wei, GS
    Peng, J
    CHINESE JOURNAL OF POLYMER SCIENCE, 2004, 22 (05) : 439 - 444
  • [37] Ozone/H2O2 Performance on the Degradation of Sulfamethoxazole
    Martins, Rui C.
    Dantas, Renato F.
    Sans, Carme
    Esplugas, Santiago
    Quinta-Ferreira, Rosa M.
    OZONE-SCIENCE & ENGINEERING, 2015, 37 (06) : 509 - 517
  • [38] DEGRADATION OF LYSOZYME BY CU(II) AND H2O2
    CHUNG, MH
    KESNER, L
    CHAN, PC
    FEDERATION PROCEEDINGS, 1981, 40 (06) : 1613 - 1613
  • [39] Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2)
    Oh, Byung-Taek
    Seo, Young-Suk
    Sudhakar, Dega
    Choe, Ji-Hyun
    Lee, Sang-Myeong
    Park, Youn-Jong
    Cho, Min
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 279 : 105 - 110
  • [40] Improving the Efficiency of Carbon Cloth for the Electrogeneration of H2O2: Role of Polytetrafluoroethylene and Carbon Black Loading
    Perez, Jose F.
    Saez, Cristina
    Llanos, Javier
    Canizares, Pablo
    Lopez, Conrado
    Rodrigo, Manuel A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (44) : 12588 - 12595