A MIXED FINITE ELEMENT METHOD FOR NONLINEAR DIFFUSION EQUATIONS

被引:44
|
作者
Burger, Martin [1 ]
Carrillo, Jose A. [2 ,3 ]
Wolfram, Marie-Therese [4 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Univ Autonoma Barcelona, ICREA, E-08193 Bellaterra, Spain
[3] Univ Autonoma Barcelona, Dept Math, E-08193 Bellaterra, Spain
[4] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
关键词
Nonlinear diffusion problems; optimal transportation problem; mixed finite element method; porous medium equation; Patlak-Keller-Segel model; KELLER-SEGEL MODEL; OPTIMAL CRITICAL MASS; TIME AGGREGATION; APPROXIMATION; CONVERGENCE; BEHAVIOR; SYSTEM; SCHEME; LONG;
D O I
10.3934/krm.2010.3.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
引用
收藏
页码:59 / 83
页数:25
相关论文
共 50 条
  • [41] A two-grid method with expanded mixed element for nonlinear reaction-diffusion equations
    Wei Liu
    Hong-xing Rui
    Hui Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 495 - 502
  • [42] A two-grid method with expanded mixed element for nonlinear reaction-diffusion equations
    Liu, Wei
    Rui, Hong-xing
    Guo, Hui
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 495 - 502
  • [43] Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations
    Gao, Huadong
    Sun, Weiwei
    Wu, Chengda
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 3175 - 3200
  • [44] Two-Grid method for nonlinear parabolic equations by expanded mixed finite element methods
    Chen, Yanping
    Chen, Luoping
    Zhang, Xiaochun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1238 - 1256
  • [45] Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations
    Gao, Huadong
    Qiu, Weifeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1660 - 1678
  • [46] Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations
    Huadong Gao
    Weifeng Qiu
    Journal of Scientific Computing, 2018, 77 : 1660 - 1678
  • [47] DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Abdellatif Agouzal (Laboratoire de Mathematiques Appliquees
    JournalofComputationalMathematics, 2000, (06) : 639 - 644
  • [48] Discontinuous finite element method for convection-diffusion equations
    Agouzal, A
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 639 - 644
  • [49] A Hermite Finite Element Method for Convection-diffusion Equations
    Ruas, V.
    Trales, P.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2213 - 2216
  • [50] MIXED FINITE-ELEMENT METHOD FOR STATIONARY STOKES EQUATIONS
    GIRAULT, V
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (03) : 534 - 555