MAXWELL GARNETT RULE FOR DIELECTRIC MIXTURES WITH STATISTICALLY DISTRIBUTED ORIENTATIONS OF INCLUSIONS

被引:27
|
作者
Koledintseva, M. Y. [1 ]
DuBroff, R. E. [1 ]
Schwartz, R. W. [1 ]
机构
[1] Missouri Univ Sci & Technol, Rolla, MO 65409 USA
关键词
ELECTROMAGNETIC PROPERTIES; COMPOSITE MEDIA; PERMITTIVITY; HOMOGENIZATION; ANISOTROPY;
D O I
10.2528/PIER09091605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analytical model of an effective permittivity of a composite taking into account statistically distributed orientations of inclusions in the form of prolate spheroids will be presented. In particular, this paper considers the normal Gaussian distribution for either zenith angle, or azimuth angle, or for both angles describing the orientation of inclusions. The model is an extension of the Maxwell Garnett (MG) mixing rule for multiphase mixtures. The resulting complex permittivity is a tensor in the general case. The formulation presented shows that the parameters of the distribution law for orientation of inclusions affect the frequency characteristics of the composites, and that it is possible to engineer the desirable frequency characteristics, if the distribution law is controlled.
引用
收藏
页码:131 / 148
页数:18
相关论文
共 41 条
  • [21] PROPERTIES OF DIELECTRIC MIXTURES WITH LAYERED SPHERICAL INCLUSIONS
    SIHVOLA, A
    MICROWAVE RADIOMETRY AND REMOTE SENSING APPLICATIONS, 1989, : 115 - 123
  • [22] COMPARISON OF EFFECTIVE MEDIUM AND MAXWELL-GARNETT PREDICTIONS FOR DIELECTRIC-CONSTANTS OF GRANULAR METALS
    GITTLEMAN, JI
    ABELES, B
    PHYSICAL REVIEW B, 1977, 15 (06): : 3273 - 3275
  • [23] From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics Part I: Random Spherical Inclusions
    de Paulis, Francesco
    Nisanci, Muhammet Hilmi
    Koledintseva, Marina Y.
    Drewniak, James L.
    Orlandi, Antonio
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2011, 53 (04) : 933 - 942
  • [24] The experimental dielectric function of porous anodic alumina in the infrared region; A comparison with the Maxwell-Garnett model
    Wackelgard, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (23) : 4289 - 4299
  • [25] From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics-Part II: Random Cylindrical Inclusions
    Nisanci, Muhammet Hilmi
    de Paulis, Francesco
    Koledintseva, Marina Y.
    Drewniak, James L.
    Orlandi, Antonio
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2012, 54 (02) : 280 - 289
  • [26] Maxwell-Garnett mixing rule in the presence of multiple scattering:: Derivation and accuracy -: art. no. 014205
    Mallet, P
    Guérin, CA
    Sentenac, A
    PHYSICAL REVIEW B, 2005, 72 (01)
  • [27] Size distribution dependence of the dielectric function of Si quantum dots described by a modified Maxwell-Garnett formulation
    Keita, A. -S.
    Naciri, A. En
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [28] Studies of permittivity and permeability of dielectric matrix with cuboid metallic inclusions in different orientations
    Wu, W. M.
    Njoku, C. C.
    Whittow, W. G.
    Zagoskin, A. M.
    Kusmartsev, F. V.
    Vardaxoglou, J. C.
    JOURNAL OF ADVANCED DIELECTRICS, 2014, 4 (04)
  • [29] A novel triple-porosity model for fractured-vuggy reservoirs based on Maxwell-Garnett mixing rule
    Tian, Jie
    Sima, Li Qiang
    Wang, Liang
    Liu, Hong Qi
    Li, Chang
    Yin, Rong
    Xie, Bing
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [30] Optical properties of plasmonic nanoparticles distributed in size determined from a modified Maxwell-Garnett-Mie theory
    Battie, Y.
    Resano-Garcia, A.
    Chaoui, N.
    Naciri, A. En
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 12, NO 1-2, 2015, 12 (1-2): : 142 - 146