Estimating Endogenous Treatment Effects Using Latent Factor Models with and without Instrumental Variables

被引:3
|
作者
Banerjee, Souvik [1 ]
Basu, Anirban [2 ]
机构
[1] Indian Inst Technol, Dept Humanities & Social Sci, Mumbai 400076, Maharashtra, India
[2] Univ Washington, Sch Pharm, Comparat Hlth Outcomes Policy & Econ CHOICE Inst, Seattle, WA 98195 USA
关键词
treatment effect; latent factor models; instrumental variable; mental illness; disability; LABOR-MARKET OUTCOMES; PSYCHIATRIC-DISORDERS; IDENTIFICATION; DEPRESSION; EMPLOYMENT; ABILITIES; RETURNS; IMPACT;
D O I
10.3390/econometrics9010014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence on the complementarity of instrumental variable (IV) and latent factor methods and how this complementarity depends on the number of outcome variables and the degree of contamination in the IV. We apply the causal inference methods to assess the impact of mental illness on work absenteeism and disability, using the National Comorbidity Survey Replication.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Estimating dose-response effects in psychological treatment trials: the role of instrumental variables
    Maracy, Mohammad
    Dunn, Graham
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (03) : 191 - 215
  • [22] Instrumental Variables and Heterogeneous Treatment Effects
    Maciejewski, Matthew L.
    Dowd, Bryan E.
    Norton, Edward C.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 327 (12): : 1177 - 1178
  • [23] Dummy endogenous treatment effect estimation using high-dimensional instrumental variables
    Zhong, Wei
    Zhou, Wei
    Fan, Qingliang
    Gao, Yang
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (03): : 795 - 819
  • [24] Estimating the quality of care in hospitals using instrumental variables
    Gowrisankaran, G
    Town, RJ
    JOURNAL OF HEALTH ECONOMICS, 1999, 18 (06) : 747 - 767
  • [25] Estimating Causal Effects in Linear Regression Models With Observational Data: The Instrumental Variables Regression Model
    Maydeu-Olivares, Alberto
    Shi, Dexin
    Fairchild, Amanda J.
    PSYCHOLOGICAL METHODS, 2020, 25 (02) : 243 - 258
  • [26] The Use of Instrumental Variables in Peer Effects Models
    von Hinke, Stephanie
    Leckie, George
    Nicoletti, Cheti
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2019, 81 (05) : 1179 - 1191
  • [27] Estimating count data models with endogenous switching: Sample selection and endogenous treatment effects
    Terza, JV
    JOURNAL OF ECONOMETRICS, 1998, 84 (01) : 129 - 154
  • [28] Estimating latent variables and jump diffusion models using high-frequency data
    Jiang, George J.
    Oomen, Roel C. A.
    JOURNAL OF FINANCIAL ECONOMETRICS, 2007, 5 (01) : 1 - 30
  • [29] ESTIMATING THE NONLINEAR AND INTERACTIVE EFFECTS OF LATENT-VARIABLES
    KENNY, DA
    JUDD, CM
    PSYCHOLOGICAL BULLETIN, 1984, 96 (01) : 201 - 210
  • [30] Estimating Heteroskedastic and Instrumental Variable Models for Binary Outcome Variables in R
    Sarrias, Mauricio
    R JOURNAL, 2023, 15 (02): : 263 - 293