Latent Dirichlet allocation model for world trade analysis

被引:10
|
作者
Kozlowski, Diego [1 ]
Semeshenko, Viktoriya [2 ,3 ]
Molinari, Andrea [2 ,3 ]
机构
[1] Univ Luxembourg, FSTM, DRIVEN, Esch Sur Alzette, Luxembourg
[2] Univ Buenos Aires, Fac Ciencias Econ, Buenos Aires, Caba, Argentina
[3] Univ Buenos Aires, Inst Interdisciplinario Econ Polit Buenos Aires, CONICET, Buenos Aires, Caba, Argentina
来源
PLOS ONE | 2021年 / 16卷 / 02期
关键词
EXPORTS;
D O I
10.1371/journal.pone.0245393
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries' exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the country-level analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Labeled Phrase Latent Dirichlet Allocation
    Tang, Yi-Kun
    Mao, Xian-Ling
    Huang, Heyan
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2016, PT I, 2016, 10041 : 525 - 536
  • [42] A Spectral Algorithm for Latent Dirichlet Allocation
    Anandkumar, Anima
    Foster, Dean P.
    Hsu, Daniel
    Kakade, Sham M.
    Liu, Yi-Kai
    ALGORITHMICA, 2015, 72 (01) : 193 - 214
  • [43] A Spectral Algorithm for Latent Dirichlet Allocation
    Anima Anandkumar
    Dean P. Foster
    Daniel Hsu
    Sham M. Kakade
    Yi-Kai Liu
    Algorithmica, 2015, 72 : 193 - 214
  • [44] Topic Selection in Latent Dirichlet Allocation
    Wang, Biao
    Liu, Zelong
    Li, Maozhen
    Liu, Yang
    Qi, Man
    2014 11TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2014, : 756 - 760
  • [45] Crowd labeling latent Dirichlet allocation
    Pion-Tonachini, Luca
    Makeig, Scott
    Kreutz-Delgado, Ken
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 53 (03) : 749 - 765
  • [46] The Auto Annotation Latent Dirichlet Allocation
    Xiang, Yingzhuo
    Yang, Dongmei
    Yan, Jikun
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCES, MACHINERY, MATERIALS AND ENERGY (ICISMME 2015), 2015, 126 : 1908 - 1911
  • [47] Analysis of the impact of investor sentiment on stock price using the latent dirichlet allocation topic model
    Chen, Meilan
    Guo, Zhiying
    Abbass, Kashif
    Huang, Wenfeng
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [48] Research progress and hot topics of distributed photovoltaic: Bibliometric analysis and Latent Dirichlet Allocation model
    Li, Na
    Lv, Tao
    Wang, Xingyu
    Meng, Xiangyun
    Xu, Jie
    Guo, Yuxia
    ENERGY AND BUILDINGS, 2025, 327
  • [49] Topic Modeling Twitter Data Using Latent Dirichlet Allocation and Latent Semantic Analysis
    Qomariyah, Siti
    Iriawan, Nur
    Fithriasari, Kartika
    2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION, 2019, 2019, 2194
  • [50] iLDA: An interactive latent Dirichlet allocation model to improve topic quality
    Liu, Yezheng
    Du, Fei
    Sun, Jianshan
    Jiang, Yuanchun
    JOURNAL OF INFORMATION SCIENCE, 2020, 46 (01) : 23 - 40