An Improved Faster R-CNN for Small Object Detection

被引:114
|
作者
Cao, Changqing [1 ]
Wang, Bo [1 ]
Zhang, Wenrui [1 ]
Zeng, Xiaodong [1 ]
Yan, Xu [1 ]
Feng, Zhejun [1 ]
Liu, Yutao [1 ]
Wu, Zengyan [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
关键词
CNN; faster R-CNN; small object detection; CONVOLUTIONAL NETWORKS;
D O I
10.1109/ACCESS.2019.2932731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increase of training data and the improvement of machine performance, the object detection method based on convolutional neural network (CNN) has become the mainstream algorithm in field of the current object detection. However, due to the complex background, occlusion and low resolution, there are still problems of small object detection. In this paper, we propose an improved algorithm based on faster region-based CNN (Faster R-CNN) for small object detection. Using the two-stage detection idea, in the positioning stage, we propose an improved loss function based on intersection over Union (IoU) for bounding box regression, and use bilinear interpolation to improve the regions of interest (RoI) pooling operation to solve the problem of positioning deviation, in the recognition stage, we use the multi-scale convolution feature fusion to make the feature map contain more information, and use the improved non-maximum suppression (NMS) algorithm to avoid loss of overlapping objects. The results show that the proposed algorithm has good performance on traffic signs whose resolution is in the range of (0, 32], the algorithm's recall rate reaches 90%, and the accuracy rate reaches 87%. Detection performance is significantly better than Faster R-CNN. Therefore, our algorithm is an effective way to detect small objects.
引用
收藏
页码:106838 / 106846
页数:9
相关论文
共 50 条
  • [21] Domain Adaptive Faster R-CNN for Object Detection in the Wild
    Chen, Yuhua
    Li, Wen
    Sakaridis, Christos
    Dai, Dengxin
    Van Gool, Luc
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3339 - 3348
  • [22] Irregular Target Object Detection Based on Faster R-CNN
    Zhang, Bin
    Zhang, Yubo
    Pan, Qinghui
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [23] Improvement of Object Detection Based on Faster R-CNN and YOLO
    Fan, Jiayi
    Lee, JangHyeon
    Jung, InSu
    Lee, YongKeun
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [24] MS-Faster R-CNN: Multi-Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images
    Avola, Danilo
    Cinque, Luigi
    Diko, Anxhelo
    Fagioli, Alessio
    Foresti, Gian Luca
    Mecca, Alessio
    Pannone, Daniele
    Piciarelli, Claudio
    REMOTE SENSING, 2021, 13 (09)
  • [25] Aerial Target Detection Based on Improved Faster R-CNN
    Feng Xiaoyu
    Mei Wei
    Hu Dashuai
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [26] Insulator Defect Detection Based on Improved Faster R-CNN
    Tang, Jinpeng
    Wang, Jiang
    Wang, Hailin
    Wei, Jiyi
    Wei, Yijian
    Qin, Mingsheng
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 541 - 546
  • [27] Cigarette Detection Algorithm Based on Improved Faster R-CNN
    Han, Guijin
    Li, Qian
    Zhou, You
    He, Yue
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2766 - 2770
  • [28] Inshore ship detection based on improved Faster R-CNN
    Tan, Xiangyu
    Tian, Tian
    Li, Hang
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [29] An Improved Faster R-CNN Algorithm for Electric Equipment Detection
    Guo Jianlong
    Feng Weixia
    Wen Manhua
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2019), 2019, : 138 - 141
  • [30] An Improved Faster R-CNN for Steel Surface Defect Detection
    Shi, Xiancong
    Zhou, Sike
    Tai, Yichun
    Wang, Jinzhong
    Wu, Shoucang
    Liu, Jinrong
    Xu, Kun
    Peng, Tao
    Zhang, Zhijiang
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,