Near infrared quazi-omnidirectional reflector in chalcogenide glasses

被引:7
|
作者
Kohoutek, T. [1 ]
Orava, J. [1 ]
Prikryl, J. [1 ]
Mistrik, J. [2 ]
Wagner, T. [1 ]
Frumar, M. [1 ]
机构
[1] Univ Pardubice, Dept Gen & Inorgan Chem, Fac Chem Technol, Pardubice 53210, Czech Republic
[2] Univ Pardubice, Dept Phys, Fac Chem Technol, Pardubice 53210, Czech Republic
关键词
Amorphous semiconductors; Chalcogenides; Multilayers; Reflectors; Ellipsometry; POLYMER;
D O I
10.1016/j.optmat.2009.07.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quazi-omnidirectional reflector was designed as a planar quarter wave stack consisting of the alternating amorphous chalcogenide Ge25S75 and Sb40Se60 films. Photonic bandgap calculation of the intended reflector predicted similar to 240 nm omnidirectional and similar to 450 rim normal incidence first-order bandgaps centred near 1.55 mu m for appropriate values of the index of refraction and thickness of the films. The TEM and HR-TEM images of the prepared 7.5 pairs reflector verified good periodicity, smooth interface and amorphous structure of the chalcogenide films deposited by thermal and flash evaporation, respectively. The optical reflectivity measurements revealed 98.8% normal incidence stopband of the reflector at 1.55 mu m. We also report the ellipsometry study of the prepared reflector. The TEM and ellipsometry studies confirmed the thickness variation of prepared individual layers to be 7 and 9 nm, respectively, compared to theoretical predictions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
  • [41] Etching parameter optimization of photonic integrated waveguides based on chalcogenide glasses for near- and mid-infrared applications
    Hammouti, Abdelali
    Meziani, Sofiane
    Bodiou, Loic
    Lemaitre, Jonathan
    Pirasteh, Parastesh
    Benardais, Albane
    Lorrain, Nathalie
    Chahal, Radwan
    Nazabal, Virginie
    Harrier, Joel
    OPTICAL MATERIALS EXPRESS, 2025, 15 (04): : 775 - 787
  • [42] Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy
    Schulte, A
    Rivero, C
    Richardson, K
    Turcotte, K
    Hamel, V
    Villeneuve, A
    Galstian, T
    Vallee, R
    OPTICS COMMUNICATIONS, 2001, 198 (1-3) : 125 - 128
  • [43] All-chalcogenide glass omnidirectional photonic band gap variable infrared filters
    Kondakci, H. Esat
    Yaman, Mecit
    Koylu, Ozlem
    Dana, Aykutlu
    Bayindir, Mehmet
    APPLIED PHYSICS LETTERS, 2009, 94 (11)
  • [44] CORRELATIONS BETWEEN PROPERTIES OF CHALCOGENIDE GLASSES .10. PHOTOELASTIC TRENDS FOR INFRARED-TRANSMITTING CHALCOGENIDE GLASSES OF DIFFERING NETWORK DIMENSIONALITY
    LINKE, D
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1986, 541 (9-10): : 142 - 162
  • [45] Infrared imaging optical systems based on novel chalcogenide glasses (invited)
    Chen J.
    Zhou G.
    Tan Y.
    Dai S.
    Lin C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (05):
  • [46] Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses
    Le Coq, D.
    Bychkov, E.
    Masselin, P.
    OPTICAL COMPONENTS AND MATERIALS XIII, 2016, 9744
  • [47] Tunable mid-infrared optical resonator on nanopatterned chalcogenide glasses
    Tabassum, Shawana
    Dong, Liang
    Kumar, Ratnesh
    INFRARED SENSORS, DEVICES, AND APPLICATIONS VIII, 2018, 10766
  • [48] INFRARED-ABSORPTION OF SOME HIGH-PURITY CHALCOGENIDE GLASSES
    HILTON, AR
    HAYES, DJ
    RECHTIN, MD
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1975, 17 (03) : 319 - 338
  • [49] THE FORMATION AND INFRARED OPTICAL-PROPERTIES OF SOME CHALCOGENIDE AND CHALCOHALIDE GLASSES
    LIANG, ZH
    FRISCHAT, GH
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 163 (02) : 169 - 176
  • [50] Compositional Dependence of Infrared Transmission in Ge-Based Chalcogenide Glasses
    Kim, Hyun
    Lee, Jun Ho
    Lee, Ji In
    Ko, Se Young
    Choi, Yong Gyu
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (11):