CNN-based Fault Diagnosis of High-speed Train with Imbalance Data: A Comparison Study

被引:0
|
作者
Wu, Yunpu [1 ]
Jin, Weidong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 611756, Peoples R China
关键词
Imbalanced data; Fault Diagnosis; High-Speed Train; Convolutional Neural Networks;
D O I
10.23919/chicc.2019.8866182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High-speed train bogie, the only component connecting the train body and track, its degradation and fault would directly threaten the safety of the vehicle. However, learning-based fault diagnosis methods are faced with imbalanced between normal samples and fault samples, which would lead to poor diagnosis performance. This paper provides a fault diagnosis architecture for high-speed train based on convolutional neural network, and critical comparison between three representative class balancing techniques, including weighted loss, focal loss, and synthetic minority over-sampling technique. The innovation of this study is concerning the judiciously chosen class balancing methods for neutral-network-based fault diagnosis of high-speed train. Based on the experiment results of this comparison study, it is found that class balancing method can significantly improve the performance of the developed diagnosis model, and synthetic minority over-sampling technique is more effective than two other approaches. This study is valuable for the further research and practical applications of fault diagnosis.
引用
收藏
页码:5053 / 5058
页数:6
相关论文
共 50 条
  • [11] Fault Diagnosis of High-Speed Train Bogie Based on the Improved-CEEMDAN and 1-D CNN Algorithms
    Huang, Deqing
    Li, Shupan
    Qin, Na
    Zhang, Yuanjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [12] Research on Fault Diagnosis Method for Speed Sensor of High-Speed Train
    Lu, Jinjun
    Wu, Mengling
    Liu, Gang
    Lu, Jinjun
    Geng, Xiaofeng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [13] Fault Diagnosis of High-Speed Train Bogie Based on Synchrony Group Convolutions
    Wu, Yunpu
    Jin, Weidong
    Ren, Junxiao
    Sun, Zhang
    SHOCK AND VIBRATION, 2019, 2019
  • [14] Fault Diagnosis of High-speed Train Bogie Based on Deep Neural Network
    Zhang, Yuanjie
    Qin, Na
    Huang, Deqing
    Liang, Kaiwei
    IFAC PAPERSONLINE, 2019, 52 (24): : 135 - 139
  • [15] Fault diagnosis of high-speed train bogie based on LSTM neural network
    Deqing Huang
    Yuanzhe Fu
    Na Qin
    Shibin Gao
    Science China Information Sciences, 2021, 64
  • [16] Fault diagnosis of high-speed train bogie based on LSTM neural network
    Huang, Deqing
    Fu, Yuanzhe
    Qin, Na
    Gao, Shibin
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (01)
  • [17] Fault diagnosis of high-speed train bogie based on LSTM neural network
    Deqing HUANG
    Yuanzhe FU
    Na QIN
    Shibin GAO
    ScienceChina(InformationSciences), 2021, 64 (01) : 260 - 262
  • [18] Hybrid System Model Based Fault Diagnosis for Speed and Position System of High-speed Train
    Xiong, Feng
    Zhang, Santong
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 763 - 767
  • [19] Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN
    Wei X.
    Chao Q.
    Tao J.
    Liu C.
    Wang L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (03):
  • [20] Bayesian Network Based Fault Diagnosis and Maintenance for High-Speed Train Control Systems
    Cheng, Yu
    Xu, Tianhua
    Yang, Lianbao
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (QR2MSE), VOLS I-IV, 2013, : 1753 - 1757