Robust K-SVD: A Novel Approach for Dictionary Learning

被引:1
|
作者
Loza, Carlos A. [1 ]
机构
[1] Univ San Francisco Quito, Dept Math, Quito, Ecuador
关键词
Dictionary learning; K-SVD; Robust estimation; ALGORITHM; SPARSE;
D O I
10.1007/978-3-030-01132-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel criterion to the well-known dictionary learning technique, K-SVD, is proposed. The approach exploits the L1-norm as the cost function for the dictionary update stage of K-SVD in order to provide robustness against impulsive noise and outlier input samples. The optimization algorithm successfully retrieves the first principal component of the input samples via greedy search methods and a parameterfree implementation. The final product is Robust K-SVD, a fast, reliable and intuitive algorithm. The results thoroughly detail how, under a wide range of noisy scenarios, the proposed technique outperforms K-SVD in terms of dictionary estimation and processing time. Recovery of Discrete Cosine Transform (DCT) bases and estimation of intrinsic dictionaries from noisy grayscale patches highlight the enhanced performance of Robust K-SVD and illustrate the circumvention of a misplaced assumption in sparse modeling problems: the availability of untampered, noiseless, and outlier-free input samples for training.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 50 条
  • [31] PolSAR image compression based on online sparse K-SVD dictionary learning
    Bai, Jing
    Liu, Bin
    Wang, Lei
    Jiao, Licheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (23) : 24859 - 24870
  • [32] A novel regularized K-SVD dictionary learning based medical image super-resolution algorithm
    Jingjing Yang
    Xiao Zhang
    Wei Peng
    Zhanbiao Liu
    Multimedia Tools and Applications, 2016, 75 : 13107 - 13120
  • [33] Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model
    Rubinstein, Ron
    Peleg, Tomer
    Elad, Michael
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (03) : 661 - 677
  • [34] Cloud K-SVD: A Collaborative Dictionary Learning Algorithm for Big, Distributed Data
    Raja, Haroon
    Bajwa, Waheed U.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (01) : 173 - 188
  • [35] Blind separation of permuted alias image based on K-SVD dictionary learning
    Duan, Xin Tao
    Zhang, E.
    Yang, Y.J.
    Wang, W.
    International Journal of Hybrid Information Technology, 2015, 8 (10): : 187 - 196
  • [36] PolSAR image compression based on online sparse K-SVD dictionary learning
    Jing Bai
    Bin Liu
    Lei Wang
    Licheng Jiao
    Multimedia Tools and Applications, 2017, 76 : 24859 - 24870
  • [37] Learning A Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD
    Jiang, Zhuolin
    Lin, Zhe
    Davis, Larry S.
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1697 - 1704
  • [38] Sub clustering K-SVD: Size variable Dictionary learning for Sparse Representations
    Feng, JianZhou
    Song, Li
    Yang, XiaoKang
    Zhang, Wenjun
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2149 - +
  • [39] Turbo Inpainting: Iterative K-SVD with a New Dictionary
    Koh, Min-Sung
    Rodriguez-Marek, Esteban
    2009 IEEE INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2009), 2009, : 74 - 79
  • [40] Onset Detection Using Leared Dictionary By K-SVD
    Gui, Wenming
    Shao, Xi
    PROCEEDINGS OF 2014 IEEE WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS (WARTIA), 2014, : 406 - 409