Symmetry and monotonicity of singular solutions of double phase problems

被引:21
|
作者
Biagi, Stefano [1 ]
Esposito, Francesco [2 ]
Vecchi, Eugenio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Double phase problems; Singular solutions; Moving plane method; QUALITATIVE PROPERTIES; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; EXISTENCE; SYSTEMS; CALCULUS; THEOREMS;
D O I
10.1016/j.jde.2021.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 50 条
  • [21] On double phase Kirchhoff problems with singular nonlinearity
    Arora, Rakesh
    Fiscella, Alessio
    Mukherjee, Tuhina
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [22] ANISOTROPIC SINGULAR DOUBLE PHASE DIRICHLET PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Youpei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4465 - 4502
  • [23] Parametric singular double phase Dirichlet problems
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [24] SYMMETRY AND MONOTONICITY PROPERTIES OF SINGULAR SOLUTIONS TO SOME COOPERATIVE SEMILINEAR ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITIES
    Esposito, Francesco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (01) : 549 - 577
  • [25] Sign-changing and symmetry-breaking solutions to singular problems
    Szulkin, Andrzej
    Waliullah, Shoyeb
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (11) : 1191 - 1208
  • [26] On critical double phase Kirchhoff problems with singular nonlinearity
    Arora, Rakesh
    Fiscella, Alessio
    Mukherjee, Tuhina
    Winkert, Patrick
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1079 - 1106
  • [27] On critical double phase Choquard problems with singular nonlinearity
    Yang, Baoling
    Zhang, Deli
    Liang, Sihua
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [28] On critical double phase Kirchhoff problems with singular nonlinearity
    Rakesh Arora
    Alessio Fiscella
    Tuhina Mukherjee
    Patrick Winkert
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 1079 - 1106
  • [29] Monotonicity and Symmetry of Solutions to Fractional Laplacian in Strips
    Sun, Tao
    Su, Hua
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [30] MONOTONICITY AND SYMMETRY OF SOLUTIONS TO FRACTIONAL LAPLACIAN EQUATION
    Cheng, Tingzhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3587 - 3599