Travelling wave solutions for a singularly perturbed Burgers-KdV equation

被引:15
|
作者
Mansour, M. B. A. [1 ]
机构
[1] S Valley Univ, Fac Sci Qena, Dept Math, Qena, Egypt
来源
PRAMANA-JOURNAL OF PHYSICS | 2009年 / 73卷 / 05期
关键词
Burgers-KdV equation; singular perturbation; travelling wave solutions; EXISTENCE;
D O I
10.1007/s12043-009-0148-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers-KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for kink-type waves.
引用
收藏
页码:799 / 806
页数:8
相关论文
共 50 条
  • [31] Exact soliton-like solutions for stochastic combined Burgers-KdV equation
    Wei, CM
    Xia, ZQ
    CHAOS SOLITONS & FRACTALS, 2005, 26 (02) : 329 - 336
  • [32] A note on the exact travelling wave solution to the KdV-Burgers equation
    Demiray, H
    WAVE MOTION, 2003, 38 (04) : 367 - 369
  • [33] A QUANTITATIVE ANALYSIS OF THE TRAVELLING WAVE SOLUTION OF THE KdV-BURGERS EQUATION
    吕咸青
    Applied Mathematics and Mechanics(English Edition), 1993, (11) : 1013 - 1018
  • [34] The solitary wave solutions to KdV-Burgers equation
    Lü, KP
    Shi, YR
    Duan, WS
    Zhao, JB
    ACTA PHYSICA SINICA, 2001, 50 (11) : 2074 - 2076
  • [35] Solitary wave solutions to KdV-Burgers equation
    Lu, K.P.
    Shi, Y.R.
    Duan, W.S.
    Zhao, J.B.
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (11):
  • [36] Travelling wave solutions to the generalized stochastic KdV equation
    Wei, Cai-Min
    Wang, Jian-Jun
    CHAOS SOLITONS & FRACTALS, 2008, 37 (03) : 733 - 740
  • [37] Travelling wave solutions for a class of generalized KdV equation
    Tang, Shengqiang
    Zheng, Jianxian
    Huang, Wentao
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) : 2768 - 2774
  • [38] Travelling wave solutions of the Burgers-Huxley equation
    Feng, Zhaosheng
    Tian, Jing
    Zheng, Shenzhou
    Lu, Hanfang
    IMA JOURNAL OF APPLIED MATHEMATICS, 2012, 77 (03) : 316 - 325
  • [39] Asymptotic step-like solutions of the singularly perturbed Burgers equation
    Samoilenko, V.
    Samoilenko, Yu.
    Zappale, E.
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [40] Wave Solutions for a (2+1)-Dimensional Burgers-KdV Equation with Variable Coefficients via the Functional Expansion Method
    Cimpoiasu, Rodica
    Constantinescu, Radu
    SYMMETRY-BASEL, 2024, 16 (01):