Bose-Hubbard model on a star lattice

被引:4
|
作者
Isakov, Sergei V. [1 ]
Sengupta, K. [2 ]
Kim, Yong Baek [3 ,4 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Indian Assoc Cultivat Sci, Theoret Phys Div, Kolkata 700032, India
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 21期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
boson systems; chemical potential; critical exponents; Hubbard model; magnetic transitions; metal-insulator transition; Monte Carlo methods; X-Y model; PHASE-TRANSITION; CRITICALITY; SUPERFLUID;
D O I
10.1103/PhysRevB.80.214503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the Bose-Hubbard model of hardcore bosons with nearest-neighbor hopping and repulsive interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the phase diagram of this model as a function of the chemical potential and the relative strength of hopping and interaction. In the strong-interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings, in contrast to their counterparts on square, triangular, and kagome lattices, are either translationally invariant resonant valence bond (RVB) phases with no density-wave order or have coexisting density-wave and RVB orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally invariant Mott states undergo direct second-order superfluid-insulator quantum phase transitions. We compute the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when approached through the tip of the Mott lobe, belong to the inverted XY universality class.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Extended Bose-Hubbard model with dipolar excitons
    Lagoin, C.
    Bhattacharya, U.
    Grass, T.
    Chhajlany, R. W.
    Salamon, T.
    Baldwin, K.
    Pfeiffer, L.
    Lewenstein, M.
    Holzmann, M.
    Dubin, F.
    NATURE, 2022, 609 (7927) : 485 - 489
  • [42] C*-algebraic approach to the Bose-Hubbard model
    Adams, Stefan
    Dorlas, Tony
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)
  • [43] Transport and entanglement generation in the Bose-Hubbard model
    Romero-Isart, O.
    Eckert, K.
    Rodo, C.
    Sanpera, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) : 8019 - 8031
  • [44] Disordered Supersolids in the Extended Bose-Hubbard Model
    Lin, Fei
    Maier, T. A.
    Scarola, V. W.
    SCIENTIFIC REPORTS, 2018, 8
  • [45] Bose-Hubbard model with localized particle losses
    Kepesidis, Kosmas V.
    Hartmann, Michael J.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [46] Effect of quantum correction in the Bose-Hubbard model
    Matsumoto, Hideki
    Takahashi, Kiyoshi
    Ohashi, Yoji
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 53 - +
  • [47] Properties of the superfluid in the disordered Bose-Hubbard model
    de Abreu, Bruno R.
    Ray, Ushnish
    Vitiello, Silvio A.
    Ceperley, David M.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [48] Route to supersolidity for the extended Bose-Hubbard model
    Iskin, M.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [49] Phase diagram of the extended Bose-Hubbard model
    Rossini, Davide
    Fazio, Rosario
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [50] Statistical Floquet prethermalization of the Bose-Hubbard model
    Dalla Torre, Emanuele G.
    Dentelski, David
    SCIPOST PHYSICS, 2021, 11 (02):