Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia

被引:10
|
作者
Liu, Keling [1 ]
Xu, Erqi [2 ]
机构
[1] China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
landcover; spatial consistency; improved Dempster-Shafer evidence theory; statistics; multi-source information fusion;
D O I
10.3390/rs13020244
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land cover products are an indispensable data source in land surface process research, and their accuracy directly affects the reliability of related research. Due to the differences in factors such as satellite sensors, the temporal-spatial resolution of remote sensing images, and landcover interpretation technologies, various recently released land cover products are inconsistent, and their accuracy is usually insufficient to meet application requirements. This study, therefore, established a fusion and correction method for multi-source landcover products by combining them with landcover statistics from the Food and Agriculture Organization of the United Nations (FAO), introducing a spatial consistency discrimination technique, and applying an improved Dempster-Shafer evidence fusion method. The five countries in Central Asia were used for a method application and verification assessment. The nine products selected (CCI-LC, CGLS, FROM-GLC, GLCNMO, MCD12Q, GFSAD30, PALSAR, GSWD, and GHS-BUILT) were consistent in time and covered the study area. Based on the interpretation of 1437 high-definition image verification areas, the overall accuracy of the fusion landcover result was 85.32%, and the kappa coefficient was 0.80, which was better than that of the existing comprehensive products. The spatial consistency fusion method had the advantage of an improved statistical fitting, with an overall similarity statistic of 0.999. The improved Dempster-Shafer evidence theory fusion method had an accuracy that was 4.86% higher than the spatial consistency method, and the kappa coefficient increased by 0.07. Combining these two methods improved the consistency of the multi-source data fusion and correction method established in this paper and will also provide more reliable basic data for future research in Central Asia.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 50 条
  • [1] Evidential reasoning-based classification of multi-source spatial data for improved land cover mapping
    Wang, Yeqiao
    Civco, Daniel L.
    Canadian Journal of Remote Sensing, 1994, 20 (04) : 381 - 395
  • [2] Uncertainty Analysis and Data Fusion of Multi-Source Land Evapotranspiration Products Based on the TCH Method
    Cui, Zilong
    Zhang, Yuan
    Wang, Anzhi
    Wu, Jiabing
    Li, Chunbo
    REMOTE SENSING, 2024, 16 (01)
  • [3] Land Cover Classification with Multi-source Data Using Evidential Reasoning Approach
    LI Huapeng1
    2. Graduate University of Chinese Academy of Sciences
    3. School of Computer and Information Science
    Chinese Geographical Science, 2011, 21 (03) : 312 - 321
  • [4] Land cover classification with multi-source data using evidential reasoning approach
    Li Huapeng
    Zhang Shuqing
    Sun Yan
    Gao Jing
    CHINESE GEOGRAPHICAL SCIENCE, 2011, 21 (03) : 312 - 321
  • [5] Land cover classification with multi-source data using evidential reasoning approach
    Huapeng Li
    Shuqing Zhang
    Yan Sun
    Jing Gao
    Chinese Geographical Science, 2011, 21 : 312 - 321
  • [6] Spatial Consistency and Accuracy Analysis of Multi-Source Land Cover Products on the Southeastern Tibetan Plateau, China
    Zhang, Binghua
    Liu, Linshan
    Zhang, Yili
    Wei, Bo
    Gong, Dianqing
    Li, Lanhui
    REMOTE SENSING, 2024, 16 (17)
  • [7] Data fusion and accuracy evaluation of multi-source global land cover datasets
    Bai Y.
    Feng M.
    Dili Xuebao/Acta Geographica Sinica, 2018, 73 (11): : 2223 - 2235
  • [8] Multi-source remotely sensed data fusion for improving land cover classification
    Chen, Bin
    Huang, Bo
    Xu, Bing
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 : 27 - 39
  • [9] Land cover change detection in the Aralkum with multi-source satellite datasets
    Low, Fabian
    Dimov, Dimo
    Kenjabaev, Shavkat
    Zaitov, Sherzod
    Stulina, Galina
    Dukhovny, Viktor
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 17 - 35
  • [10] Integration of multi-source remote sensing data for land cover change detection
    Petit, CC
    Lambin, EF
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2001, 15 (08) : 785 - 803