Uncertainty Analysis and Data Fusion of Multi-Source Land Evapotranspiration Products Based on the TCH Method

被引:3
|
作者
Cui, Zilong [1 ,2 ]
Zhang, Yuan [1 ]
Wang, Anzhi [1 ]
Wu, Jiabing [1 ]
Li, Chunbo [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
ET; TCH; uncertainty analysis; data fusion; TERRESTRIAL EVAPOTRANSPIRATION; EDDY COVARIANCE; EVAPORATION; MODEL; VARIABILITY; CLIMATES; FLUXNET; CARBON;
D O I
10.3390/rs16010028
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Evapotranspiration (ET) is a very important variable in the global water cycle, carbon cycle, and energy cycle. However, there are still some uncertainties in existing ET products. Therefore, this paper evaluates the uncertainty of three widely used global ET products (ERA5-Land, GLDAS-Noah, and MERRA-2) based on the three-cornered hat (TCH) method, and generates a new ET product based on this. The new product is a long-series global monthly ET dataset with a spatial resolution of 0.25 degrees x 0.25 degrees and a time span of 21 years. The results show that ERA5-Land (8.46 mm/month) has the lowest uncertainty among the three ET products, followed by GLDAS-Noah (8.81 mm/month) and MERRA-2 (11.78 mm/month). The new product (TCH) captures ET trends in different regions as well as validating against in situ flux observations, and it exhibits better performance than the re-analysis dataset (ERA5-Land) in vegetation classifications such as evergreen needle-leaf forest, grassland, open shrubland, savanna, and woody savanna. The linear trend analysis of the new product shows a significant decreasing trend in south-eastern South America and southwestern parts of Africa, and an increasing trend in almost all other regions, including eastern North America, north-eastern South America, western Europe, north-central Africa, southern Asia, and south-eastern Oceania.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Triple Collocation-Based Uncertainty Analysis and Data Fusion of Multi-Source Evapotranspiration Data Across China
    Wang, Dayang
    Liu, Shaobo
    Wang, Dagang
    ATMOSPHERE, 2024, 15 (12)
  • [2] A Situation Analysis Method for Specific Domain Based on Multi-source Data Fusion
    Wang, Haijian
    Zhang, Zhaohui
    Wang, Pengwei
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT I, 2018, 10954 : 160 - 171
  • [3] Resident Travel Characteristics Analysis Method Based on Multi-source Data Fusion
    Su Y.-J.
    Wen H.-Y.
    Wei Q.-B.
    Wu D.-X.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (05): : 56 - 63
  • [4] Multi-source Data Fusion Method Based on Difference Information
    Wang, Shu
    Ren, Yu
    Guan, Zhan-Xu
    Wang, Jing
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (09): : 1246 - 1253
  • [5] Key Data Source Identification Method Based on Multi-Source Traffic Data Fusion
    Li, Shuo
    Zhang, Mengmeng
    Chen, Yongheng
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 364 - 375
  • [6] Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia
    Liu, Keling
    Xu, Erqi
    REMOTE SENSING, 2021, 13 (02) : 1 - 24
  • [7] Multi-source data fusion for economic data analysis
    Li, Menggang
    Wang, Fang
    Jia, Xiaojun
    Li, Wenrui
    Li, Ting
    Rui, Guangwei
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 4729 - 4739
  • [8] Multi-source data fusion for economic data analysis
    Menggang Li
    Fang Wang
    Xiaojun Jia
    Wenrui Li
    Ting Li
    Guangwei Rui
    Neural Computing and Applications, 2021, 33 : 4729 - 4739
  • [9] Tourism Information Data Processing Method Based on Multi-Source Data Fusion
    Li, YaoGuang
    Gan, HeChi
    JOURNAL OF SENSORS, 2021, 2021
  • [10] Research on Multi-source Data Fusion Method Based on Bayesian Estimation
    Sun, Tao
    Yu, Min
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 321 - 324