Comparison of variance-reduction techniques for gamma dose rate determination

被引:0
|
作者
Guadagni, Ettore [1 ]
Le Loirec, Cindy [1 ]
Mancusi, Davide [2 ]
机构
[1] CEA, DES, IRESNE, DER,Serv Phys Reacteurs & Cycle, F-13108 Cadarache, St Paul Lez Dur, France
[2] Univ Paris Saclay, CEA, DES, ISAS,DM2S,Serv Etud Reacteurs & Math Appl, F-91191 Gif Sur Yvette, France
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 02期
关键词
D O I
10.1140/epjp/s13360-021-01196-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Three-dimensional computer simulation and virtual reality technology enable the visualization of dose encountered by workers during dismantling operations by using simplified real-time dose computation tools. Such tools generally use a macroscopic approach for gamma dose rate calculation, namely the point kernel integration method with build-up factors. This simplified physical model enhances calculation performance but presents also some restrictions. In contrast, stochastic Monte Carlo methods enable a precise estimation of gamma dose rate, but computing time is prohibitive for real-time dose applications. To speed up the simulation, Monte Carlo codes can be used in combination with variance-reduction techniques, which have to be used very cautiously to stay within their limits of validity. This paper presents a comparison between two variance-reduction techniques implemented in the Monte Carlo code TRIPOLI-4 (R), the exponential transform and the adaptive multilevel splitting, testing their efficiency in dismantling-like configurations.Both methods behave better in deep penetration problems but require a good amount of user experience in the creation of the importance map. This study shows the need to develop a new type of algorithm capable to tackle configurations where the lack of collisions can limit the efficiency of the current VRT.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Variance-reduction normalization technique for a compton camera system
    Kim, S. M.
    Lee, J. S.
    Kim, J. H.
    Seo, H.
    Kim, C. H.
    Lee, C. S.
    Lee, S. J.
    Lee, M. C.
    Lee, D. S.
    JOURNAL OF INSTRUMENTATION, 2011, 6
  • [12] Comparison of variance-reduction and space-filling approaches for the design of environmental monitoring networks
    Faculty of Marine and Environmental Sciences, University of Algarve, Campus de Gambelas, 8000 Faro, Portugal
    不详
    不详
    不详
    Comput.-Aided Civ. Infrastruct. Eng., 7 (489-498):
  • [13] Comparison of variance-reduction and space-filling approaches for the design of environmental monitoring networks
    Nunes, L. M.
    Paralta, E.
    Cunha, M. C.
    Ribeiro, L.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2007, 22 (07) : 489 - 498
  • [14] Variance-reduction techniques for Monte Carlo simulation of small and far-from-the-axis radiation fields
    Brualla, L.
    Sempau, J.
    Sauerwein, W.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2010, 186 : 96 - 97
  • [15] Limitations on Variance-Reduction and Acceleration Schemes for Finite Sum Optimization
    Arjevani, Yossi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [16] A projected decentralized variance-reduction algorithm for constrained optimization problems
    Deng, Shaojiang
    Gao, Shanfu
    Lu, Qingguo
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (2): : 913 - 928
  • [17] A projected decentralized variance-reduction algorithm for constrained optimization problems
    Shaojiang Deng
    Shanfu Gao
    Qingguo Lü
    Yantao Li
    Huaqing Li
    Neural Computing and Applications, 2024, 36 : 913 - 928
  • [18] Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques
    Brualla, L.
    Salvat, F.
    Palanco-Zamora, R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (13): : 4131 - 4149
  • [19] Variance-Reduction Methods for Monte Carlo Simulation of Radiation Transport
    Garcia-Pareja, Salvador
    Lallena, Antonio M.
    Salvat, Francesc
    FRONTIERS IN PHYSICS, 2021, 9
  • [20] The recursive variance-reduction simulation algorithm for network reliability evaluation
    Cancela, H
    El Khadiri, M
    IEEE TRANSACTIONS ON RELIABILITY, 2003, 52 (02) : 207 - 212