Code of practice for high-temperature testing of weldments

被引:6
|
作者
Dogan, B.
Nikbin, K.
Petrovski, B.
Ceyhan, U.
Dean, D. W.
机构
[1] GKSS Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
[3] British Energy Generat Ltd, Gloucester GL4 3RS, England
关键词
code of practice; fracture mechanics; weldments; creep crack initiation; creep crack growth; C*; specimen geometry; eta-factor;
D O I
10.1016/j.ijpvp.2006.08.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present paper reports on a code of practice (CoP) for high-temperature testing of weldments for industrially relevant specimens. Novel aspects of the CoP include advice for testing weldment zones using different specimen geometries. Those specimens differ from the standard compact tension C(T) specimen recommended in the only available creep crack growth (CCG) testing standard ASTM E1457. Recommendations for the required number of tests, techniques for testing, treatment of test records, reduction of test data and data analysis are presented. Associated specimen selection guidelines for industrial creep crack initiation (CCI) and growth testing are also described. Validation tests carried out on P22 and P91 weldments, and base metals of 316H steel and C-Mn steel using relevant specimen geometries are briefly described. The CoP contains recommended K and C* solutions, Y functions and eta factors, which are used to determine values of the fracture parameters K and C* for the specimen geometries considered. Information from these new tests, together with a review of previous CCG tests on non-standard geometries, have been used in recommending the best method of analysis for CCI and CCG data for a range of creep brittle to creep ductile welded materials. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:784 / 797
页数:14
相关论文
共 50 条
  • [41] Thermocouples for high-temperature in-pile testing
    Rempe, J. L.
    Knudson, D. L.
    Condie, K. G.
    Wilkins, S. Curtis
    NUCLEAR TECHNOLOGY, 2006, 156 (03) : 320 - 331
  • [42] MAGNETIC TESTING METHODS OF HIGH-TEMPERATURE STEELS
    GINSZTLER, J
    MESZAROS, I
    HIDASI, B
    DEVENYI, L
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 1994, 59 (1-3) : 271 - 273
  • [43] High-temperature testing exposes failure modes
    Mancini, R
    EDN, 1998, 43 (17) : 24 - 24
  • [44] MACHINE FOR HIGH-TEMPERATURE TENSILE TESTING IN VACUUM
    SAVCHENK.VI
    LITOVCHE.DI
    SMIRNOV, YK
    GAIDAMAC.GS
    INDUSTRIAL LABORATORY, 1968, 34 (07): : 1050 - &
  • [45] HIGH-TEMPERATURE VACUUM FURNACE FOR TENSILE TESTING
    SMITH, EA
    GUARD, RW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1956, 27 (06): : 386 - 387
  • [46] DEFICIENCIES IN TRADITIONAL HIGH-TEMPERATURE STORAGE TESTING
    SCHAFER, HC
    JOURNAL OF ENVIRONMENTAL SCIENCES, 1977, 20 (01): : 15 - &
  • [47] High-temperature materials testing with full-field strain measurement: Experimental design and practice
    Novak, Mark D.
    Zok, Frank W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (11):
  • [48] A high-performance electromagnetic code to simulate high-temperature superconductors
    Soba, A.
    Fernandez-Serracanta, O.
    Lorenzo, J.
    Garcin, D.
    Houzeaux, G.
    Lamas, N.
    Granados, X.
    Mantsinen, M. J.
    FUSION ENGINEERING AND DESIGN, 2024, 201
  • [49] HIGH-TEMPERATURE DILATOMETRIC HIGH-PRECISION TESTING INSTALLATION
    POSNOV, NP
    GUREVICH, VM
    DEMENEV, AE
    MEASUREMENT TECHNIQUES, 1978, 21 (02) : 287 - 288
  • [50] High-Temperature Testing of High Performance Fiber Reinforced Concrete
    Fort, Jan
    Vejmelkova, Eva
    Pavlikova, Milena
    Trnik, Anton
    Citek, David
    Kolisko, Jiri
    Cerny, Robert
    Pavlik, Zbysek
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738