Multiple solutions for some nonlinear Schrodinger equations with indefinite linear part

被引:10
|
作者
Wang, Feizhi [1 ]
机构
[1] Yantai Univ, Dept Math, Yantai 264005, Shangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; linking theorem; (del)-theorem; orthogonalization technique;
D O I
10.1016/j.jmaa.2006.09.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of nonlinear Schrodinger equation with indefinite linear part in R-N. We prove that the problem has at least three nontrivial solutions by means of Linking Theorem and (del)-Theorem. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1001 / 1022
页数:22
相关论文
共 50 条
  • [41] RESONANT NEUMANN EQUATIONS WITH INDEFINITE LINEAR PART
    Barletta, Giuseppina
    Livrea, Roberto
    Papageorgiou, Nikolaos S.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (02) : 469 - 491
  • [42] Least energy solutions of some indefinite Schrodinger systems
    Xu, Ruijin
    Su, Jiabao
    Tian, Rushun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 424 : 501 - 525
  • [43] On Solutions for Linear and Nonlinear Schrodinger Equations with Variable Coefficients: A Computational Approach
    Amador, Gabriel
    Colon, Kiara
    Luna, Nathalie
    Mercado, Gerardo
    Pereira, Enrique
    Suazo, Erwin
    SYMMETRY-BASEL, 2016, 8 (06):
  • [44] Multiple nontrivial solutions for semilinear elliptic Neumann problems with indefinite linear part
    Filippakis, M.
    Papageorgiou, N. S.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (02): : 371 - 381
  • [45] Bifurcation results for a semilinear Schrodinger equation with indefinite linear part
    Zhang, ZJ
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 493 - 498
  • [46] Nonautonomous and non periodic Schrodinger equation with indefinite linear part
    Maia, L. A.
    Oliveira Junior, J. C.
    Ruviaro, R.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 17 - 36
  • [47] Some novel solutions for the two-coupled nonlinear Schrodinger equations
    Xiang, Rui
    Ling, Liming
    Lu, Xing
    APPLIED MATHEMATICS LETTERS, 2017, 68 : 163 - 170
  • [48] AXIAL SYMMETRY OF SOME STEADY STATE SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS
    Gui, Changfeng
    Malchiodi, Andrea
    Xu, Haoyuan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 1023 - 1032
  • [49] Multiple solutions of higher topological type for semiclassical nonlinear Schrodinger equations
    Fang, Xiang-Dong
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (01):
  • [50] On distinctive solitons type solutions for some important nonlinear Schrodinger equations
    Osman, M. S.
    Machado, J. A. T.
    Baleanu, D.
    Zafar, A.
    Raheel, M.
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (02)