Statistical Analysis of Surface Texture Performance With Provisions With Uncertainty in Texture Dimension

被引:9
|
作者
Mo, Fan [1 ]
Shen, Cong [2 ]
Zhou, Jia [1 ]
Khonsari, Michael M. [2 ]
机构
[1] Chongqing Univ, Dept Ind Engn, Chongqing 400044, Peoples R China
[2] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA
来源
IEEE ACCESS | 2017年 / 5卷
基金
中国国家自然科学基金;
关键词
Dimension uncertainties; parameter optimization; statistical simulation; surface textures; HYDRODYNAMIC LUBRICATION; MANUFACTURING ERRORS; ENGINEERING DESIGN; PARAMETERS; BEHAVIOR; CONTACT; DIMPLES; MODEL; SHAPE; ART;
D O I
10.1109/ACCESS.2017.2694608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of surface textures with dimensional uncertainty due to the manufacturing process is investigated with statistical models. The uncertainty parameters are geometrical dimensions (i.e., dimple diameter, area ratio, and dimple depth) and the performance parameters include the friction force, the load-carrying capacity, and the coefficient of friction. The results show that logarithmic models provide an excellent fit to the data and can explain more than 99.98% of the variance in data. The most critical geometric parameter for the coefficient of friction and the load-carrying capacity is found to be the dimple diameter, whereas the most critical geometric parameter for the friction force is the area ratio. Manufacturing errors that follow normal distribution with three-sigma quality are found to be insignificant. Under the conditions simulated, it is determined that a dimple diameter of 1883 mu.m and a dimple depth of 5.5 similar to 6.5 mu.m yield optimal performance when operating in the hydrodynamic lubrication regime. The area ratio is the key parameter and must be determined based on the requirements of the load-carrying capacity and the coefficient of friction.
引用
收藏
页码:5388 / 5398
页数:11
相关论文
共 50 条
  • [41] PROPOSED TECHNIQUE FOR STATISTICAL-ANALYSIS OF GRAIN TEXTURE
    NEWHOUSE, VL
    TARTONO, S
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1982, 29 (08) : 616 - 616
  • [42] A review of statistical nuclear texture analysis in cancer research
    Nielsen, Birgitte
    Albregtsen, Fritz
    Danielsen, Havard E.
    CELLULAR ONCOLOGY, 2008, 30 (02) : 165 - 165
  • [43] Study of statistical methods for texture analysis and their modern evolutions
    Ramola, Ayushman
    Shakya, Amit Kumar
    Van Pham, Dai
    ENGINEERING REPORTS, 2020, 2 (04)
  • [44] STATISTICAL COLOR TEXTURE DESCRIPTORS FOR HISTOLOGICAL IMAGES ANALYSIS
    Herve, Nicolas
    Servais, Aude
    Thervet, Eric
    Olivo-Marin, Jean-Christophe
    Meas-Yedid, Vannary
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 724 - 727
  • [45] Statistical methods for texture analysis applied to agronomical images
    Cointault, F.
    Journaux, L.
    Gouton, P.
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS, 2008, 6813
  • [46] Fractal dimension of maximum response filters applied to texture analysis
    Ribas, Lucas Correia
    Goncalves, Diogo Nunes
    Margarido Orue, Jonatan Patrick
    Goncalves, Wesley Nunes
    PATTERN RECOGNITION LETTERS, 2015, 65 : 116 - 123
  • [47] Palmprint recognition through the fractal dimension estimation for texture analysis
    Mokni, Raouia
    Kherallah, Monji
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2016, 8 (3-4) : 254 - 274
  • [48] Texture analysis using volume-radius fractal dimension
    Backes, Andre R.
    Bruno, Odemir M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 5870 - 5875
  • [49] Palmprint recognition through the fractal dimension estimation for texture analysis
    Mokni R.
    Kherallah M.
    Mokni, Raouia (raouia.mokni@gmail.com), 1600, Inderscience Publishers (08): : 254 - 274
  • [50] Photon Energy Becomes the Third Dimension in Crystallographic Texture Analysis
    Grunewald, Tilman A.
    Rennhofer, Harald
    Tack, Pieter
    Garrevoet, Jan
    Wermeille, Didier
    Thompson, Paul
    Bras, Wim
    Vincze, Laszlo
    Lichtenegger, Helga C.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (40) : 12190 - 12194