Attentive Cross-Modal Fusion Network for RGB-D Saliency Detection

被引:22
|
作者
Liu, Di [1 ]
Zhang, Kao [1 ]
Chen, Zhenzhong [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Object detection; Saliency detection; Feature extraction; Fuses; Visualization; Computational modeling; Semantics; Cross-modal attention; residual attention; fusion refinement network; RGB-D salient object detection; OBJECT DETECTION; MODEL; DISPARITY; FIXATION;
D O I
10.1109/TMM.2020.2991523
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an attentive cross-modal fusion (ACMF) network is proposed for RGB-D salient object detection. The proposed method selectively fuses features in a cross-modal manner and uses a fusion refinement module to fuse output features from different resolutions. Our attentive cross-modal fusion network is built based on residual attention. In each level of ResNet output, both the RGB and depth features are turned into an identity map and a weighted attention map. The identity map is reweighted by the attention map of the paired modality. Moreover, the lower level features with higher resolution are adopted to refine the boundary of detected targets. The entire architecture can be trained end-to-end. The proposed ACMF is compared with state-of-the-art methods on eight recent datasets. The results demonstrate that our model can achieve advanced performance on RGB-D salient object detection.
引用
收藏
页码:967 / 981
页数:15
相关论文
共 50 条
  • [21] Robust RGB-D Fusion for Saliency Detection
    Wu, Zongwei
    Gobichettipalayam, Shriarulmozhivarman
    Tamadazte, Brahim
    Allibert, Guillaume
    Paudel, Danda Pani
    Demonceaux, Cedric
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 403 - 413
  • [22] RGB-D Salient Object Detection Based on Cross-modal Interactive Fusion and Global Awareness
    Sun F.-M.
    Hu X.-H.
    Wu J.-Y.
    Sun J.
    Wang F.-S.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (04): : 1899 - 1913
  • [23] Visual Saliency Prediction Using Attention-based Cross-modal Integration Network in RGB-D Images
    Zhang, Xinyue
    Jin, Ting
    Han, Mingjie
    Lei, Jingsheng
    Cao, Zhichao
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (02): : 439 - 452
  • [24] An improved dense-to-sparse cross-modal fusion network for 3D object detection in RGB-D images
    Yan Chen
    Jianjun Ni
    Guangyi Tang
    Weidong Cao
    Simon X. Yang
    Multimedia Tools and Applications, 2024, 83 : 12159 - 12184
  • [25] An improved dense-to-sparse cross-modal fusion network for 3D object detection in RGB-D images
    Chen, Yan
    Ni, Jianjun
    Tang, Guangyi
    Cao, Weidong
    Yang, Simon X.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 12159 - 12184
  • [26] Lightweight cross-modal transformer for RGB-D salient object detection
    Huang, Nianchang
    Yang, Yang
    Zhang, Qiang
    Han, Jungong
    Huang, Jin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [27] Cross-Modal Attentional Context Learning for RGB-D Object Detection
    Li, Guanbin
    Gan, Yukang
    Wu, Hejun
    Xiao, Nong
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1591 - 1601
  • [28] Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
    Wang, Shuaihui
    Jiang, Fengyi
    Xu, Boqian
    SENSORS, 2023, 23 (16)
  • [29] Cross-modal refined adjacent-guided network for RGB-D salient object detection
    Bi H.
    Zhang J.
    Wu R.
    Tong Y.
    Jin W.
    Multimedia Tools Appl, 24 (37453-37478): : 37453 - 37478
  • [30] Multi-level cross-modal interaction network for RGB-D salient object detection
    Huang, Zhou
    Chen, Huai-Xin
    Zhou, Tao
    Yang, Yun-Zhi
    Liu, Bi-Yuan
    NEUROCOMPUTING, 2021, 452 : 200 - 211