All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations

被引:21
|
作者
Hebenstreit, M. [1 ]
Jozsa, R. [2 ]
Kraus, B. [1 ]
Strelchuk, S. [2 ]
Yoganathan, M. [2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21A, A-6020 Innsbruck, Austria
[2] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
基金
奥地利科学基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
CLASSICAL SIMULATION; QUANTUM COMPUTATION;
D O I
10.1103/PhysRevLett.123.080503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic states were introduced in the context of Clifford circuits as a resource that elevates classically simulatable computations to quantum universal capability, while maintaining the same gate set. Here we study magic states in the context of matchgate (MG) circuits, where the notion becomes more subtle, as MGs are subject to locality constraints. Nevertheless a similar picture of gate-gadget constructions applies, and we show that every pure fermionic state which is non-Gaussian, i.e., which cannot be generated by MGs from a computational basis state, is a magic state for MG computations. This result has significance for prospective quantum computing implementation in view of the fact that MG circuit evolutions coincide with the quantum physical evolution of noninteracting fermions.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Gaussian quantum adaptation of non-Gaussian states for a lossy channel
    Filip, Radim
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [22] Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors
    Su, Daiqin
    Myers, Casey R.
    Sabapathy, Krishna Kumar
    PHYSICAL REVIEW A, 2019, 100 (05)
  • [23] Four-qubit pure states as fermionic states
    Chen, Lin
    Dokovic, Dragomir Z.
    Grassl, Markus
    Zeng, Bei
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [24] Classical simulation of non-Gaussian fermionic circuits
    Dias, Beatriz
    Koenig, Robert
    QUANTUM, 2024, 8 : 1 - 68
  • [25] Non-Gaussian entangled states and quantum teleportation of Schrodinger-cat states
    Seshadreesan, Kaushik P.
    Dowling, Jonathan P.
    Agarwal, Girish S.
    PHYSICA SCRIPTA, 2015, 90 (07) : 12
  • [26] Non-Gaussian quantum states of a multimode light field
    Young-Sik Ra
    Adrien Dufour
    Mattia Walschaers
    Clément Jacquard
    Thibault Michel
    Claude Fabre
    Nicolas Treps
    Nature Physics, 2020, 16 : 144 - 147
  • [27] Entanglement entropy: non-Gaussian states and strong coupling
    José J. Fernández-Melgarejo
    Javier Molina-Vilaplana
    Journal of High Energy Physics, 2021
  • [28] Entanglement entropy: non-Gaussian states and strong coupling
    Fernandez-Melgarejo, Jose J.
    Molina-Vilaplana, Javier
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [29] Non-Gaussian states with strong positive partial transpose
    Abdessamad Belfakir
    Mustapha Ziane
    Morad El Baz
    Yassine Hassouni
    The European Physical Journal D, 2019, 73
  • [30] Fisher information and entanglement of non-Gaussian spin states
    Strobel, Helmut
    Muessel, Wolfgang
    Linnemann, Daniel
    Zibold, Tilman
    Hume, David B.
    Pezze, Luca
    Smerzi, Augusto
    Oberthaler, Markus K.
    SCIENCE, 2014, 345 (6195) : 424 - 427