All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations

被引:21
|
作者
Hebenstreit, M. [1 ]
Jozsa, R. [2 ]
Kraus, B. [1 ]
Strelchuk, S. [2 ]
Yoganathan, M. [2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21A, A-6020 Innsbruck, Austria
[2] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
基金
奥地利科学基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
CLASSICAL SIMULATION; QUANTUM COMPUTATION;
D O I
10.1103/PhysRevLett.123.080503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic states were introduced in the context of Clifford circuits as a resource that elevates classically simulatable computations to quantum universal capability, while maintaining the same gate set. Here we study magic states in the context of matchgate (MG) circuits, where the notion becomes more subtle, as MGs are subject to locality constraints. Nevertheless a similar picture of gate-gadget constructions applies, and we show that every pure fermionic state which is non-Gaussian, i.e., which cannot be generated by MGs from a computational basis state, is a magic state for MG computations. This result has significance for prospective quantum computing implementation in view of the fact that MG circuit evolutions coincide with the quantum physical evolution of noninteracting fermions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Gaussian-optimized preparation of non-Gaussian pure states
    Menzies, David
    Filip, Radim
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [2] Interconversion of pure Gaussian states requiring non-Gaussian operations
    Jabbour, Michael G.
    Garcia-Patron, Raul
    Cerf, Nicolas J.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [3] Non-Gaussian pure states and positive Wigner functions
    Corney, J. F.
    Olsen, M. K.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [4] Efficient Learning of Quantum States Prepared With Few Fermionic Non-Gaussian Gates
    Mele, Antonio Anna
    Herasymenko, Yaroslav
    PRX QUANTUM, 2025, 6 (01):
  • [5] Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications
    Shi, Tao
    Demler, Eugene
    Cirac, J. Ignacio
    ANNALS OF PHYSICS, 2018, 390 : 245 - 302
  • [6] Entangled non-Gaussian states formed by mixing Gaussian states
    Lund, A. P.
    Ralph, T. C.
    van Loock, P.
    JOURNAL OF MODERN OPTICS, 2008, 55 (13) : 2083 - 2094
  • [7] NON-GAUSSIAN MULTIPHOTON SQUEEZED STATES
    DARIANO, G
    RASETTI, M
    PHYSICAL REVIEW D, 1987, 35 (04): : 1239 - 1247
  • [8] Efficient representation of Gaussian fermionic pure states in noncomputational bases
    Tarighi, Babak
    Khasseh, Reyhaneh
    Rajabpour, M. A.
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [9] Non-Gaussian states by conditional measurements
    Genoni, Marco G.
    Beduini, Federica A.
    Allevi, Alessia
    Bondani, Maria
    Olivares, Stefano
    Paris, Matteo G. A.
    PHYSICA SCRIPTA, 2010, T140
  • [10] Teleportation of non-Gaussian states of light
    Benichi, H.
    Lee, N.
    Takeda, S.
    Furusawa, A.
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC): THE TENTH INTERNATIONAL CONFERENCE, 2011, 1363