Expanding the toolkit for membrane protein modeling in Rosetta

被引:25
|
作者
Leman, Julia Koehler [1 ,2 ]
Mueller, Benjamin K. [3 ,4 ]
Gray, Jeffrey J. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Simons Ctr Data Anal, Simons Fdn, New York, NY 10001 USA
[3] Vanderbilt Univ, Dept Chem, Nashville, TN 37221 USA
[4] Vanderbilt Univ, Struct Biol Ctr, Nashville, TN 37221 USA
关键词
PREDICTION; DESIGN;
D O I
10.1093/bioinformatics/btw716
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A range of membrane protein modeling tools has been developed in the past 5-10 years, yet few of these tools are integrated and make use of existing functionality for soluble proteins. To extend existing methods in the Rosetta biomolecular modeling suite for membrane proteins, we recently implemented RosettaMP, a general framework for membrane protein modeling. While RosettaMP facilitates implementation of new methods, addressing real-world biological problems also requires a set of accessory tools that are used to carry out standard modeling tasks. Results: Here, we present six modeling tools, including de novo prediction of single trans-membrane helices, making mutations and refining the structure with different amounts of flexibility, transforming a protein into membrane coordinates and optimizing its embedding, computing a Rosetta energy score, and visualizing the protein in the membrane bilayer. We present these methods with complete protocol captures that allow non-expert modelers to carry out the computations.
引用
收藏
页码:754 / 756
页数:3
相关论文
共 50 条
  • [1] Expanding the membrane-protein NMR toolkit
    Cheng, Ricky C.
    Maduke, Merritt
    NATURE CHEMICAL BIOLOGY, 2020, 16 (09) : 937 - 938
  • [2] Expanding the membrane-protein NMR toolkit
    Ricky C. Cheng
    Merritt Maduke
    Nature Chemical Biology, 2020, 16 : 937 - 938
  • [3] Modeling membrane geometries implicitly in Rosetta
    Woods, Hope
    Leman, Julia Koehler
    Meiler, Jens
    PROTEIN SCIENCE, 2024, 33 (03)
  • [4] Targeting protein function: the expanding toolkit for conditional disruption
    Campbell, Amy E.
    Bennett, Daimark
    BIOCHEMICAL JOURNAL, 2016, 473 : 2573 - 2589
  • [5] Nanodiscs: A toolkit for membrane protein science
    Sligar, Stephen G.
    Denisov, Ilia G.
    PROTEIN SCIENCE, 2021, 30 (02) : 297 - 315
  • [6] Multipass membrane protein structure prediction using Rosetta
    Yarov-Yarovoy, V
    Schonbrun, J
    Baker, D
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (04) : 1010 - 1025
  • [7] A Rosetta stone for analysis of human membrane protein function
    Spitzer, Nicholas C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (31) : 10641 - 10642
  • [8] Expanding the optogenetics toolkit
    Kate Gao
    Nature Methods, 2018, 15 : 1003 - 1003
  • [9] Expanding the bioorthogonal toolkit
    Prescher, Jennifer A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [10] Expanding the optogenetics toolkit
    Berndt, Andre
    Deisseroth, Karl
    SCIENCE, 2015, 349 (6248) : 590 - 591