Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution

被引:73
|
作者
Kong, Xiangke [1 ,2 ]
Han, Zhantao [1 ,2 ]
Zhang, Wei [1 ,2 ]
Song, Le [1 ,2 ]
Li, Hui [1 ,2 ]
机构
[1] CAGS, Inst Hydrogeol & Environm Geol, Shijiazhuang 050061, Peoples R China
[2] Key Lab Groundwater Contaminat Remediat, Shijiazhuang 050061, Peoples R China
基金
中国国家自然科学基金;
关键词
Zeolite-supported microscale zero-valent iron (Z-mZVI); Synthesis; Heavy metals; Removal mechanism; PERMEABLE REACTIVE BARRIERS; GROUNDWATER REMEDIATION; HEAVY-METALS; WASTE-WATER; NANOSCALE; CHROMIUM; CADMIUM; CR(VI); PARTICLES; BENTONITE;
D O I
10.1016/j.jenvman.2015.12.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Zeolite-supported microscale zero-valent iron (Z-mZVI) was synthesized and used to remove heavy metal cation (Cd2+) and anion (Cr6+) from aqueous solution. Transmission electron microscope (TEM) confirmed that mZVI (100-200 nm) has been successfully loaded and efficiently dispersed on zeolite. Atomic absorption Spectroscopy (AAS) revealed the amount of stabilized mZVI was about 13 wt.%. The synthesized Z-mZVI has much higher reduction ability and adsorption capacity for Cr6+ and Cd2+ compared to bare nanoscale zero-valent iron (nZVI) and zeolite. Above 77% Cr6+ and 99% Cd2+ were removed by Z-mZVI, while only 45% Cr6+ and 99% Cd2+ were removed by the same amount iron of nZVI, and 1% Cr6+ and 39% Cd2+ were removed by zeolite alone with an initial concentration of 20 mg/L Cr6+ and 200 mg/L Cd2+. The removal of Cr6+ by Z-mZVI follows the pseudo first-order kinetics model, and Xray photoelectron spectroscopy (XPS) analysis confirmed that Cr6+ was reduced to Cr3+ and immobilized on the surface of Z-mZVI. The removal mechanisms for Cr6+ include reduction, adsorption of Cr3+ hydroxides and/or mixed Fe3+/Cr3+ (oxy)hydroxides. The pseudo-second-order kinetic model indicated that chemical sorption might be rate-limiting in the sorption of Cd2+ by Z-mZVI. This synthesized Z-mZVI has shown the potential as an efficient and promising reactive material for removing various heavy metals from wastewater or polluted groundwater. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [41] Pinewood outperformed bamboo as feedstock to prepare biochar-supported zero-valent iron for Cr6+ reduction
    Zhou, Min
    Zhang, Changai
    Yuan, Yangfan
    Mao, Xiaoyun
    Li, Yuncong
    Wang, Nong
    Wang, Shengsen
    Wang, Xiaozhi
    ENVIRONMENTAL RESEARCH, 2020, 187
  • [42] Nanoscale zero-valent iron loaded vermiform expanded graphite for the removal of Cr (VI) from aqueous solution
    Cai, Xinwei
    Qiu, Yangshuai
    Zhou, Yanhong
    Jiao, Xuan
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (08):
  • [43] Removal of cadmium in aqueous solution by sulfidated nanoscale Zero-Valent Iron
    Yang W.
    Qin R.
    Qin R.
    Zhang L.
    Qiu M.
    Nature Environment and Pollution Technology, 2020, 19 (02) : 755 - 760
  • [44] Continuous Flow Process for Cr(VI) Removal from Aqueous Solutions Using Resin Supported Zero-Valent Iron
    Toli, A.
    Mystrioti, Ch.
    Xenidis, A.
    Papassiopi, N.
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2021, 106 (03) : 409 - 414
  • [45] Continuous Flow Process for Cr(VI) Removal from Aqueous Solutions Using Resin Supported Zero-Valent Iron
    A. Toli
    Ch. Mystrioti
    A. Xenidis
    N. Papassiopi
    Bulletin of Environmental Contamination and Toxicology, 2021, 106 : 409 - 414
  • [46] Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron
    Zhang, YQ
    Amrhein, C
    Frankenberger, WT
    SCIENCE OF THE TOTAL ENVIRONMENT, 2005, 350 (1-3) : 1 - 11
  • [47] Effective removal of nemacide fosthiazate from an aqueous solution using zero-valent iron
    Wu, Junxue
    Shen, Chongyang
    Zhang, Hongyan
    Lu, Weilan
    Zhang, Yun
    Wang, Chengju
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2015, 161 : 11 - 20
  • [48] Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal
    Zhongsen Wang
    Lijun Qiu
    Yunhua Huang
    Meng Zhang
    Xi Cai
    Fanyu Wang
    Yang Lin
    Yanbiao Shi
    Xiao Liu
    ChineseChemicalLetters, 2024, 35 (07) : 218 - 221
  • [49] Carbothermal Synthesis of Sludge Biochar Supported Nanoscale Zero-Valent Iron for the Removal of Cd2+ and Cu2+: Preparation, Performance, and Safety Risks
    Shao, Yingying
    Tian, Chao
    Yang, Yanfeng
    Shao, Yanqiu
    Zhang, Tao
    Shi, Xinhua
    Zhang, Weiyi
    Zhu, Ying
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (23)
  • [50] Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron
    Wu, Hongwei
    Feng, Qiyan
    Yang, Hong
    Lu, Ping
    Gao, Bo
    Alansari, Amir
    ENVIRONMENTAL TECHNOLOGY, 2019, 40 (23) : 3114 - 3123