Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system

被引:8
|
作者
Lu, T. M. [1 ]
Tracy, L. A. [1 ]
Laroche, D. [1 ]
Huang, S. -H. [2 ,3 ,4 ]
Chuang, Y. [2 ,3 ,4 ]
Su, Y. -H. [2 ,3 ,4 ]
Li, J. -Y. [2 ,3 ,4 ]
Liu, C. W. [2 ,3 ,4 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
[4] Natl Nano Device Labs, Hsinchu 30077, Taiwan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家科学基金会;
关键词
TILTED MAGNETIC-FIELD; SPIN SUSCEPTIBILITY; RESISTANCE SPIKES; ELECTRON-SYSTEM; INSTABILITY; WELLS; GAS;
D O I
10.1038/s41598-017-02757-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum Hall ferromagnetic transitions are typically achieved by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of similar to 2.4 x 1010 cm(-2), this ratio grows greater than 1, resulting in a ferromagnetic ground state at filling factor nu = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. Such gate-controlled spin-polarizations in the quantum Hall regime opens the door to realizing Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effect of valence band structure on the fractional quantum Hall effect of two-dimensional hole systems
    Muraki, K
    Hirayama, Y
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 65 - 69
  • [42] Effect of valence band structure on the fractional quantum Hall effect of two-dimensional hole systems
    Muraki, K.
    Hirayama, Y.
    Physica B: Condensed Matter, 249-251 : 65 - 69
  • [43] Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites
    Nie, S. M.
    Song, Zhida
    Weng, Hongming
    Fang, Zhong
    PHYSICAL REVIEW B, 2015, 91 (23)
  • [44] Controlling the Quantum Spin Hall Edge States in Two-Dimensional Transition Metal Dichalcogenides
    Pulkin, Artem
    Yazyev, Oleg, V
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (17): : 6964 - 6969
  • [45] Quantum Spin Hall Effect in Two-Dimensional Crystals of Transition-Metal Dichalcogenides
    Cazalilla, M. A.
    Ochoa, H.
    Guinea, F.
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [46] Numerical study of spin Hall transport in a two-dimensional hole-gas system
    Chen, WQ
    Weng, ZY
    Sheng, DN
    PHYSICAL REVIEW B, 2005, 72 (23):
  • [47] Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification
    Zhang, Huisheng
    Qin, Wei
    Chen, Mingxing
    Cui, Ping
    Zhang, Zhenyu
    Xu, Xiaohong
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [48] Quantum Hall effect breakdown of two dimensional hole gases
    Stoddart, ST
    Wirtz, R
    Eaves, L
    Gallagher, BL
    Main, PC
    Henini, M
    MICROELECTRONIC ENGINEERING, 1999, 47 (1-4) : 35 - 37
  • [49] Quantum Hall effect breakdown of two dimensional hole gases
    Stoddart, S.T.
    Wirtz, R.
    Eaves, L.
    Gallagher, B.L.
    Main, P.C.
    Henini, M.
    Microelectronic Engineering, 1999, 47 (01): : 35 - 37
  • [50] Optical probing of a two-dimensional electron system in a microcavity: Quantum Hall Polaritons
    Ravets, Sylvain
    Faelt, Stefan
    Kroner, Martin
    Wegsheider, Werner
    Imamoglu, Atac
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,