Preparation, structures, and multiferroic properties of single phase Bi1-xLaxFeO3 (x=0-0.40) ceramics

被引:132
|
作者
Zhang, Shan-Tao [1 ]
Pang, Ling-Hua
Zhang, Yi
Lu, Ming-Hui
Chen, Yan-Feng
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210092, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2390625
中图分类号
O59 [应用物理学];
学科分类号
摘要
A simple and effective method that solid state reaction followed by quenching process is developed to prepare multiferroic La-substituted BiFeO3 (Bi1-xLaxFeO3 (BLFOx) with x=0-0.40) ceramics. X-ray diffraction, x-ray photoelectron spectroscopy, and inductively coupled plasma studies show that the ceramics prepared under the optimized conditions are single phase. A phase transition from rhombohedral to orthorhombic phase is observed near x=0.30. This transition has great effects on the multiferroic properties. Magnetic and electric measurements reveal that the BLFO0.30 has enhanced multiferroic properties with two times remnant magnetization and polarization of 0.041 emu/g and 22.4 mu C/cm(2), respectively. The enhanced multiferroic properties are attributed to the enhanced magnetoelectric interaction, which results from the La substitution-induced destruction of the spin cycloid. These results show that BiFeO3-based perovskite solid solution with no other ferroelectric end member can have improved multiferroic properties via enhancing magnetoelectric interaction. This work may provide some guidelines for further study on BiFeO3 and BiFeO3-based solid solutions. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Rapid preparations of Bi1-xLaxFeO3±δ thin films and their ferroelectric properties
    Shi Yu-Jun
    Zhang Xu
    Qin Lei
    Jin Kui
    Yuan Jie
    Zhu Bei-Yi
    Zhu Yun
    ACTA PHYSICA SINICA, 2016, 65 (05)
  • [22] Effect of La substitution on conductivity and dielectric properties of Bi1-xLaxFeO3 ceramics: An impedance spectroscopy analysis
    Pandit, Pragya
    Satapathy, S.
    Gupta, P. K.
    PHYSICA B-CONDENSED MATTER, 2011, 406 (13) : 2669 - 2677
  • [23] Structural, optical, dielectric and magnetic properties of Bi1-xLaxFeO3 nanoparticles
    Abdel-Khalek, E. K.
    Ibrahim, Islam
    Salama, Tarek M.
    Elseman, Ahmed M.
    Mohamed, Mohamed Mokhtar
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 465 : 309 - 315
  • [24] Investigation of diversified properties in trivalent La doped Bi1-xLaxFeO3 compounds
    Jadav, G. D.
    Kanjariya, P. V.
    Bhalodia, J. A.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (15)
  • [25] Structural and magnetic properties of nanocrystalline Bi1-xLaxFeO3 (0.0 ≤ x ≤ 0.4) synthesized by a mechanochemical route
    Cristobal, Adrian A.
    Ramos, Cinthia P.
    Susana Conconi, M.
    Bercoff, Paula G.
    Botta, Pablo M.
    MATERIALS RESEARCH BULLETIN, 2017, 95 : 292 - 299
  • [26] Hyperfine interactions in the Bi1-xLaxFeO3 ferrites (x=0.0225, 0.075, 0.9)
    Pokatilov, V. S.
    Salamatin, D. A.
    Bokov, A., V
    Salamatin, A., V
    Velichkov, A.
    Mikhin, M., V
    Grozdov, D. S.
    Vergel, K. N.
    Sigov, A. S.
    Makarova, A. O.
    Budzynski, M.
    Tsvyashchenko, A., V
    HYPERFINE INTERACTIONS, 2021, 242 (01):
  • [27] Structural properties of Bi1-xLaxFeO3 studied by micro-Raman scattering
    杨洋
    刘玉龙
    朱恪
    张丽艳
    马树元
    刘洁
    将毅坚
    Chinese Physics B, 2010, 19 (03) : 555 - 560
  • [28] Structural properties of Bi1-xLaxFeO3 studied by micro-Raman scattering
    Yang Yang
    Liu Yu-Long
    Zhu Ke
    Zhang Li-Yan
    Ma Shu-Yuan
    Liu Jie
    Jiang Yi-Jian
    CHINESE PHYSICS B, 2010, 19 (03)
  • [29] Multiferroic properties and exchange bias in Bi1-xSrxFeO3(x=0–0.6) ceramics
    马争争
    李建青
    陈子鹏
    田召明
    胡晓军
    黄海军
    Chinese Physics B, 2014, 23 (09) : 450 - 454
  • [30] Structural, Dielectric and Magnetic Properties of Sol-Gel Synthesized Bi1-xLaxFeO3 Nanoparticles (x=0.3)
    Riaz, Saira
    Majid, Farzana
    Naseem, Shahzad
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2016, : 994 - 997