Partial synchronization in coupled chemical chaotic oscillators

被引:19
|
作者
Wang, Jun-Wei [1 ]
Chen, Ai-Min [2 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial synchronization; Clustering; Linear invariant manifold; Chemical chaos; Nonlinear contraction principle; CLUSTER SYNCHRONIZATION; CONTRACTION ANALYSIS; LATTICES; SCHEMES;
D O I
10.1016/j.cam.2009.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the problem of partial synchronization in diffusively coupled chemical chaotic oscillators with zero-flux boundary conditions. The dynamical properties of the chemical system which oscillates with Uniform Phase evolution, yet has Chaotic Amplitudes (UPCA) are first discussed. By combining numerical and analytical methods, the impossibility of full global synchronization in a network of two or three Coupled chemical oscillators is discovered. Mathematically, stable partial synchronization corresponds to convergence to a linear invariant manifold of the global state space. The sufficient conditions for exponential stability of the invariant manifold in a network of three coupled chemical oscillators are obtained via the nonlinear contraction principle. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1897 / 1904
页数:8
相关论文
共 50 条
  • [31] Generalized synchronization of chaotic oscillators as a partial case of time scale synchronization
    Koronovskii, AA
    Khramov, AE
    TECHNICAL PHYSICS LETTERS, 2004, 30 (12) : 998 - 1001
  • [32] Partial amplitude death in coupled chaotic oscillators
    Liu, WQ
    Xiao, JH
    Yang, JZ
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [33] Dynamic behavior of complete synchronization of coupled chaotic oscillators
    Bao Gang
    Narenmandula
    Tubuxin
    Eredencang
    ACTA PHYSICA SINICA, 2007, 56 (04) : 1971 - 1974
  • [34] In phase and antiphase synchronization of coupled homoclinic chaotic oscillators
    Leyva, I
    Allaria, E
    Boccaletti, S
    Arecchi, FT
    CHAOS, 2004, 14 (01) : 118 - 122
  • [35] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Caneco, Acilina
    Gracio, Clara
    Rocha, J. Leonel
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 102 - 111
  • [36] Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators
    Hramov, AE
    Koronovskii, AA
    EUROPHYSICS LETTERS, 2005, 70 (02): : 169 - 175
  • [37] Cluster synchronization modes in an ensemble of coupled chaotic oscillators
    Belykh, VN
    Belykh, IV
    Mosekilde, E
    PHYSICAL REVIEW E, 2001, 63 (03): : 362161 - 362164
  • [38] Generalized synchronization of chaotic oscillators as a partial case of time scale synchronization
    A. A. Koronovskii
    A. E. Khramov
    Technical Physics Letters, 2004, 30 : 998 - 1001
  • [39] Intermittent lag synchronization in a pair of coupled chaotic oscillators
    Valladares, DL
    Boccaletti, S
    Carusela, MF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (10): : 2699 - 2704
  • [40] Generalized phase synchronization in unidirectionally coupled chaotic oscillators
    Lee, DS
    Kye, WH
    Rim, S
    Kwon, TY
    Kim, CM
    PHYSICAL REVIEW E, 2003, 67 (04):