Multi-sensor multi-object tracking with different fields-of-view using the LMB filter

被引:0
|
作者
Li, Suqi [1 ]
Battistelli, Giorgio [2 ]
Chisci, Luigi [2 ]
Yi, Wei [1 ]
Wang, Bailu [1 ]
Kong, Lingjiang [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Firenze, Dipartimento Ingn Informaz, Via Santa Marta 3, I-50139 Florence, Italy
基金
中国国家自然科学基金;
关键词
MULTI-BERNOULLI FILTER; RANDOM FINITE SETS; DISTRIBUTED FUSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key issue in multi-sensor surveillance is the capability to surveil a much larger region than the field-of-view (FoV) of any individual sensor by exploiting cooperation among sensor nodes. Whenever a centralized or distributed information fusion approach is undertaken, this goal cannot be achieved unless a suitable fusion approach is devised. This paper proposes a novel approach for dealing with different FoVs within the context of Generalized Covariance Intersection (GCI) fusion. The approach can be used to perform multi-object tracking on both a centralized and a distributed peer-to-peer sensor network. Simulation experiments on realistic tracking scenarios demonstrate the effectiveness of the proposed solution.
引用
收藏
页码:1201 / 1208
页数:8
相关论文
共 50 条
  • [31] Tracking filter and multi-sensor data fusion
    Girija, G
    Raol, JR
    Raj, RA
    Kashyap, S
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 159 - 167
  • [32] Tracking filter and multi-sensor data fusion
    Girija, G.
    Raol, J.R.
    Raj, R.Appavu
    Kashyap, Sudesh
    Sadhana - Academy Proceedings in Engineering Sciences, 2000, 25 (02) : 159 - 167
  • [33] Tracking filter and multi-sensor data fusion
    G. Girija
    J. R. Raol
    R. Appavu raj
    Sudesh Kashyap
    Sadhana, 2000, 25 : 159 - 167
  • [34] Heterogeneous Multi-Sensor Fusion With Random Finite Set Multi-Object Densities
    Yi, Wei
    Chai, Lei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3399 - 3414
  • [35] Energy Efficient Multi-Object Tracking in Sensor Networks
    Fuemmeler, Jason A.
    Veeravalli, Venugopal V.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3742 - 3750
  • [36] A Mobile Sensor Configuration and Multi-object Tracking Algorithm
    Liu Weifeng
    Wen Chenglin
    Zhu Shujun
    Sun Yao
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 4862 - 4867
  • [37] Multi-Sensor Multi-Target Tracking Using Probability Hypothesis Density Filter
    Liu, Long
    Ji, Hongbing
    Zhang, Wenbo
    Liao, Guisheng
    IEEE ACCESS, 2019, 7 : 67745 - 67760
  • [38] Centralized Information Fusion with Limited Multi-View for Multi-Object Tracking
    Liu, Minti
    Zeng, Cao
    Zhao, Shihua
    Li, Shidong
    4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [39] Multi-object tracking using dominant sets
    Tesfaye, Yonatan T.
    Zemene, Eyasu
    Pelillo, Marcello
    Prati, Andrea
    IET COMPUTER VISION, 2016, 10 (04) : 289 - 298
  • [40] Multi-Object Tracking Using TLD Framework
    Sharma, Swati Naresh
    Khachane, Ajitkumar
    Motwani, Dilip
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1766 - 1769