First-Principles Calculation of the Third Virial Coefficient of Helium

被引:43
|
作者
Garberoglio, Giovanni [1 ,2 ]
Harvey, Allan H. [3 ]
机构
[1] Univ Trent, CNISM, I-38100 Povo, TN, Italy
[2] Univ Trent, Dipartimento Fis, I-38100 Povo, TN, Italy
[3] Natl Inst Stand & Technol, Thermophys Properties Div, Boulder, CO 80305 USA
关键词
calibration; density; helium; metrology; path integral; thermodynamic properties; virial coefficients; POTENTIAL-ENERGY CURVE; AB-INITIO CALCULATIONS; HE-AR SYSTEM; THERMOPHYSICAL PROPERTIES; DEGREES C; 700; ATM; QUANTUM THEORY; DILUTE HELIUM; ATOM PAIR; GAS;
D O I
10.6028/jres.114.018
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Knowledge of the pair and three-body potential-energy surfaces of helium is now sufficient to allow calculation of the third density virial coefficient, C(T), with significantly smaller uncertainty than that of existing experimental data. In this work, we employ the best available pair and three-body potentials for helium and calculate C(T) with path-integral Monte Carlo (PIMC) calculations supplemented by semiclassical calculations. The values of C(T) presented extend from 24.5561 K to 10 000 K. In the important metrological range of temperatures near 273.16 K, our uncertainties are smaller than the best experimental results by approximately an order of magnitude, and the reduction in uncertainty at other temperatures is at least as great. For convenience in calculation of C(T) and its derivatives, a simple correlating equation is presented.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 50 条
  • [31] First-principles calculation of the thermal properties of silver
    Xie, JJ
    de Gironcoli, S
    Baroni, S
    Scheffler, M
    PHYSICAL REVIEW B, 1999, 59 (02): : 965 - 969
  • [32] First-Principles Calculation of the Cross Second Virial Coefficient and the Dilute Gas Shear Viscosity, Thermal Conductivity, and Binary Diffusion Coefficient of the (H2O + N2) System
    Hellmann, Robert
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12): : 5959 - 5973
  • [33] First-principles calculation of the infrared spectrum of hematite
    Blanchard, Marc
    Lazzeri, Michele
    Mauri, Francesco
    Balan, Etienne
    AMERICAN MINERALOGIST, 2008, 93 (07) : 1019 - 1027
  • [34] First-principles calculation of the infrared spectrum of lizardite
    Balan, E
    Saitta, AM
    Mauri, F
    Lemaire, C
    Guyot, F
    AMERICAN MINERALOGIST, 2002, 87 (10) : 1286 - 1290
  • [35] First-principles calculation of ordering phase transition
    Mohri, Tetsuo
    Ohno, Munekazu
    Chen, Ying
    SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIAL 2005, VOL 2, 2005, : 633 - 650
  • [36] FIRST-PRINCIPLES CALCULATION OF THE STRUCTURE OF OXIDE SURFACES
    Bates, S. P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 66 - 66
  • [37] Alternative first-principles calculation of entropy for liquids
    Meyer, Edmund R.
    Ticknor, Christopher
    Kress, Joel D.
    Collins, Lee A.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [38] First-principles calculation on the Curie temperature of GdFeSi
    Liu, X. B.
    Altounian, Z.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [39] First-principles calculation of the energy of compressed calcium
    A. N. Kasatkin
    T. A. Olesnitskii
    M. F. Sarry
    Physics of the Solid State, 2011, 53 : 443 - 454
  • [40] First-principles calculation on Ni doped ZnS
    Zeng, Dong
    Fu, Chun-Lin
    Cai, Wei
    Guo, Qian
    Tan, Ping
    Zhang, Chao-Yang
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2013, 42 (01): : 166 - 171