New compactly supported spatiotemporal covariance functions from SPDEs

被引:4
|
作者
Ruiz-Medina, M. D. [1 ]
Angulo, J. M. [1 ]
Christakos, G. [2 ]
Fernandez-Pascual, R. [3 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat, Campus Fuente Nueva S-N, E-18071 Granada, Spain
[2] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China
[3] Univ Granada, Fac Econ, Dept Quantitat Methods Econ & Enterprise, Campus Cartuja S-N, E-18071 Granada, Spain
来源
STATISTICAL METHODS AND APPLICATIONS | 2016年 / 25卷 / 01期
关键词
Duality condition; Empirical-wavelet-based variogram estimation; Non-local Dirichlet forms; Space-time covariance models; Stochastic spatiotemporal fractional-order pseudodifferential models;
D O I
10.1007/s10260-015-0333-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Potential theory and Dirichlet's priciple constitute the basic elements of the well-known classical theory of Markov processes and Dirichlet forms. This paper presents new classes of fractional spatiotemporal covariance models, based on the theory of non-local Dirichlet forms, characterizing the fundamental solution, Green kernel, of Dirichlet boundary value problems for fractional pseudodifferential operators. The elements of the associated Gaussian random field family have compactly supported non-separable spatiotemporal covariance kernels admitting a parametric representation. Indeed, such covariance kernels are not self-similar but can display local self-similarity, interpolating regular and fractal local behavior in space and time. The associated local fractional exponents are estimated from the empirical log-wavelet variogram. Numerical examples are simulated for illustrating the properties of the space-time covariance model class introduced.
引用
收藏
页码:125 / 141
页数:17
相关论文
共 50 条
  • [31] Frame sets for a class of compactly supported continuous functions
    Atindehou, A. Ganiou D.
    Kouagou, Yebeni B.
    Okoudjou, Kasso A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)
  • [32] Compactly supported tight frames associated with refinable functions
    Chui, CK
    He, WJ
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (03) : 293 - 319
  • [33] Compactly supported Wannier functions and strictly local projectors
    Sathe, Pratik
    Harper, Fenner
    Roy, Rahul
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (33)
  • [34] On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
    Kalybay, A. A.
    Keulimzhayeva, Zh A.
    Oinarov, R.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 312 (01) : 179 - 193
  • [35] On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
    A. A. Kalybay
    Zh. A. Keulimzhayeva
    R. Oinarov
    Proceedings of the Steklov Institute of Mathematics, 2021, 312 : 179 - 193
  • [36] MULTIRESOLUTION ANALYSIS BY INFINITELY DIFFERENTIABLE COMPACTLY SUPPORTED FUNCTIONS
    DYN, N
    RON, A
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (01) : 15 - 20
  • [37] Medical image registration using compactly supported functions
    De Rossi, Alessandra
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2013, 4
  • [38] On the Gabor frame set for compactly supported continuous functions
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [39] Why restrict ourselves to compactly supported basis functions?
    Unser, M
    Blu, T
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IX, 2001, 4478 : 311 - 314
  • [40] Compactly supported, piecewise affine scaling functions on triangulations
    Donovan, GC
    Geronimo, JS
    Hardin, DP
    CONSTRUCTIVE APPROXIMATION, 2000, 16 (02) : 201 - 219