New compactly supported spatiotemporal covariance functions from SPDEs

被引:4
|
作者
Ruiz-Medina, M. D. [1 ]
Angulo, J. M. [1 ]
Christakos, G. [2 ]
Fernandez-Pascual, R. [3 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat, Campus Fuente Nueva S-N, E-18071 Granada, Spain
[2] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China
[3] Univ Granada, Fac Econ, Dept Quantitat Methods Econ & Enterprise, Campus Cartuja S-N, E-18071 Granada, Spain
来源
STATISTICAL METHODS AND APPLICATIONS | 2016年 / 25卷 / 01期
关键词
Duality condition; Empirical-wavelet-based variogram estimation; Non-local Dirichlet forms; Space-time covariance models; Stochastic spatiotemporal fractional-order pseudodifferential models;
D O I
10.1007/s10260-015-0333-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Potential theory and Dirichlet's priciple constitute the basic elements of the well-known classical theory of Markov processes and Dirichlet forms. This paper presents new classes of fractional spatiotemporal covariance models, based on the theory of non-local Dirichlet forms, characterizing the fundamental solution, Green kernel, of Dirichlet boundary value problems for fractional pseudodifferential operators. The elements of the associated Gaussian random field family have compactly supported non-separable spatiotemporal covariance kernels admitting a parametric representation. Indeed, such covariance kernels are not self-similar but can display local self-similarity, interpolating regular and fractal local behavior in space and time. The associated local fractional exponents are estimated from the empirical log-wavelet variogram. Numerical examples are simulated for illustrating the properties of the space-time covariance model class introduced.
引用
收藏
页码:125 / 141
页数:17
相关论文
共 50 条
  • [1] New compactly supported spatiotemporal covariance functions from SPDEs
    M. D. Ruiz-Medina
    J. M. Angulo
    G. Christakos
    R. Fernández-Pascual
    Statistical Methods & Applications, 2016, 25 : 125 - 141
  • [2] Compactly supported radial covariance functions
    G. Moreaux
    Journal of Geodesy, 2008, 82 : 431 - 443
  • [3] Compactly supported radial covariance functions
    Moreaux, G.
    JOURNAL OF GEODESY, 2008, 82 (07) : 431 - 443
  • [4] Unifying compactly supported and Matern covariance functions in spatial statistics
    Bevilacqua, Moreno
    Caamano-Carrillo, Christian
    Porcu, Emilio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [5] Vector random fields with compactly supported covariance matrix functions
    Du, Juan
    Ma, Chunsheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (03) : 457 - 467
  • [6] Classes of compactly supported covariance functions for multivariate random fields
    Daley, Daryl J.
    Porcu, Emilio
    Bevilacqua, Moreno
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (04) : 1249 - 1263
  • [7] Classes of compactly supported covariance functions for multivariate random fields
    Daryl J. Daley
    Emilio Porcu
    Moreno Bevilacqua
    Stochastic Environmental Research and Risk Assessment, 2015, 29 : 1249 - 1263
  • [8] On a class of non-stationary, compactly supported spatial covariance functions
    Mateu, J.
    Fernandez-Aviles, G.
    Montero, J. M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (02) : 297 - 309
  • [9] On a class of non-stationary, compactly supported spatial covariance functions
    J. Mateu
    G. Fernández-Avilés
    J. M. Montero
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 297 - 309
  • [10] Compactly supported correlation functions
    Gneiting, T
    JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 83 (02) : 493 - 508