Machine learning method for predicting pacemaker implantation following transcatheter aortic valve replacement

被引:17
|
作者
Truong, Vien T. [1 ,2 ]
Beyerbach, Daniel [1 ,2 ]
Mazur, Wojciech [1 ,2 ]
Wigle, Matthew [1 ,2 ]
Bateman, Emma [3 ]
Pallerla, Akhil [4 ]
Ngo, Tam N. M. [1 ,2 ]
Shreenivas, Satya [1 ,2 ]
Tretter, Justin T. [5 ]
Palmer, Cassady [1 ,2 ]
Kereiakes, Dean J. [1 ,2 ]
Chung, Eugene S. [1 ,2 ]
机构
[1] Christ Hosp, Hlth Network, Cincinnati, OH 45219 USA
[2] Lindner Res Ctr, 2123 Auburn Ave,Ste 424, Cincinnati, OH 45219 USA
[3] Univ Kentucky, Lexington, KY USA
[4] Univ Pittsburgh, Pittsburgh, PA USA
[5] Cincinnati Childrens Hosp Med Ctr, Inst Heart, Cincinnati, OH 45229 USA
来源
关键词
machine learning; pacemaker implantation; prediction; random forest; TAVR; CORONARY-ARTERY-DISEASE; ALL-CAUSE MORTALITY; CONDUCTION DISTURBANCES; RANDOM FOREST; RISK; OUTCOMES; MODELS;
D O I
10.1111/pace.14163
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background An accurate assessment of permanent pacemaker implantation (PPI) risk following transcatheter aortic valve replacement (TAVR) is important for clinical decision making. The aims of this study were to investigate the significance and utility of pre- and post-TAVR ECG data and compare machine learning approaches with traditional logistic regression in predicting pacemaker risk following TAVR. Methods Five hundred fifity seven patients in sinus rhythm undergoing TAVR for severe aortic stenosis (AS) were included in the analysis. Baseline demographics, clinical, pre-TAVR ECG, post-TAVR data, post-TAVR ECGs (24 h following TAVR and before PPI), and echocardiographic data were recorded. A Random Forest (RF) algorithm and logistic regression were used to train models for assessing the likelihood of PPI following TAVR. Results Average age was 80 +/- 9 years, with 52% male. PPI after TAVR occurred in 95 patients (17.1%). The optimal cutoff of delta PR (difference between post and pre TAVR PR intervals) to predict PPI was 20 ms with a sensitivity of 0.82, a specificity of 0.66. With regard to delta QRS, the optimal cutoff was 13 ms with a sensitivity of 0.68 and a specificity of 0.59. The RF model that incorporated post-TAVR ECG data (AUC 0.81) more accurately predicted PPI risk compared to the RF model without post-TAVR ECG data (AUC 0.72). Moreover, the RF model performed better than logistic regression model in predicting PPI risk (AUC: 0.81 vs. 0.69). Conclusions Machine learning using RF methodology is significantly more powerful than traditional logistic regression in predicting PPI risk following TAVR.
引用
收藏
页码:334 / 340
页数:7
相关论文
共 50 条
  • [1] Dynamic nomogram for predicting pacemaker implantation following transcatheter aortic valve replacement
    Truong, Vien T.
    Beyerbach, Daniel
    Mazur, Wojciech
    Wigle, Matthew
    Pallerla, Akhil
    Bateman, Emma
    Ngo, Tam N. M.
    Shreenivas, Satya
    Palmer, Cassady
    Tretter, Justin T.
    Kereiakes, Dean J.
    Chung, Eugene S.
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2021, 44 (07): : 1277 - 1278
  • [2] Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement
    Savino, Danielle C.
    McCarthy, Fenton H.
    Spragan, Danielle D.
    Dibble, Taylor
    Graves, Desmond
    Dufendach, Keith
    Giri, Jay S.
    Szeto, Wilson Y.
    Groeneveld, Peter W.
    Herrmann, Howard C.
    Bavaria, Joseph E.
    Desai, Nimesh D.
    JACC-CARDIOVASCULAR INTERVENTIONS, 2017, 10 (12) : 1276 - 1278
  • [3] New Pacemaker Implantation Following Transcatheter Aortic Valve Replacement
    Taramasso, Maurizio
    Shinichi, Shirai
    Hayashi, Masaomi
    Kawaguchi, Tomohiro
    Arai, Yoshio
    Ando, Kenji
    Naganuma, Toru
    Mizutani, Kazuki
    Araki, Motoharu
    Tada, Norio
    Yamanaka, Futoshi
    Tabata, Minoru
    Ueno, Hiroshi
    Takagi, Kensuke
    Watanabe, Yusuke
    Yamamoto, Masanori
    Hayashida, Kentaro
    Miura, Mizuki
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (17) : B199 - B200
  • [4] MACHINE LEARNING ALGORITHMS FOR PREDICTION OF PACEMAKER IMPLANTATION AFTER TRANSCATHETER AORTIC VALVE REPLACEMENT
    Tsushima, Takahiro
    Al-Kindi, Sadeer
    Nadeem, Fahd
    Clevenger, Joshua
    Attizzani, Guilherme
    Elgudin, Yakov
    Markowitz, Alan
    Costa, Marco
    Simon, Daniel I.
    Arruda, Mauricio
    Mackall, Judith
    Thal, Sergio
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 384 - 384
  • [5] Integrated machine learning a predictor of pacemaker implantation after transcatheter aortic valve replacement
    Condello, Ignazio
    Nasso, Giuseppe
    D'Alessandro, Pasquale
    Contegiacomo, Gaetano
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2023, 46 (11): : 1440 - 1441
  • [6] A Simple Noninvasive Score for Predicting Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement
    Routh, Jared M.
    Joseph, Lee
    Marthaler, Brodie R.
    Bhave, Prashant
    CIRCULATION, 2015, 132
  • [7] Predicting the Need for a Permanent Pacemaker Device Following Transcatheter Aortic Valve Replacement Using Supervised Machine Learning
    Sheikh, Wasiq
    Parulkar, Anshul
    Ahmed, Malik B.
    Ilyas, Suleman
    Sharma, Esseim
    Lima, Fabio V.
    Rosen, Benjamin
    Osler, Brian
    Ovide, Gerry
    Chu, Antony F.
    CIRCULATION, 2020, 142
  • [8] Outcomes of permanent pacemaker implantation following transcatheter aortic valve replacement
    Fauchier, L.
    Bodin, A.
    Bisson, A.
    Herbert, J.
    Lacour, T.
    Saint Etienne, C.
    Clerc, J. M.
    Quilliet, L.
    Semaan, K.
    Ivanes, F.
    Pierre, B.
    Deharo, P.
    Babuty, D.
    Clementy, N.
    EUROPEAN HEART JOURNAL, 2020, 41 : 719 - 719
  • [9] REPLY: Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement
    Fadahunsi, Opeyemi O.
    Olowoyeye, Abiola
    Ukaigwe, Anene
    Li, Zhuokai
    Vora, Amit N.
    Vemulapalli, Sreekanth
    Elgin, Eric
    Donato, Anthony
    JACC-CARDIOVASCULAR INTERVENTIONS, 2017, 10 (12) : 1278 - 1279
  • [10] Permanent Pacemaker Implantation Following Valve-in-Valve Transcatheter Aortic Valve Replacement
    Alperi, Alberto
    Rodes-Cabau, Josep
    Simonato, Matheus
    Tchetche, Didier
    Charbonnier, Gaetan
    Ribeiro, Henrique B.
    Latib, Azeem
    Montorfano, Matteo
    Barbanti, Marco
    Bleiziffer, Sabine
    Redfors, Bjorn
    Abdel-Wahab, Mohamed
    Allali, Abdelhakim
    Bruschi, Giuseppe
    Napodano, Massimo
    Agrifoglio, Marco
    Petronio, Anna Sonia
    Giannini, Cristina
    Chan, Albert
    Kornowski, Ran
    Pravda, Nili Schamroth
    Adam, Matti
    Iadanza, Alessandro
    Noble, Stephane
    Chatfield, Andrew
    Erlebach, Magdalena
    Kempfert, Joerg
    Ubben, Timm
    Wijeysundera, Harindra
    Seiffert, Moritz
    Pilgrim, Thomas
    Kim, Won-Keun
    Testa, Luca
    Hildick-Smith, David
    Nerla, Roberto
    Fiorina, Claudia
    Brinkmann, Christina
    Conzelmann, Lars
    Champagnac, Didier
    Saia, Francesco
    Nissen, Henrik
    Amrane, Hafid
    Whisenant, Brian
    Shamekhi, Jasmin
    Sondergaard, Lars
    Webb, John G.
    Dvir, Danny
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 2263 - 2273