Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study

被引:165
|
作者
Wang, Zhenpo [1 ,2 ]
Yuan, Jing [1 ,2 ]
Zhu, Xiaoqing [1 ,2 ]
Wang, Hsin [3 ]
Huang, Lvwei [4 ]
Wang, Yituo [5 ]
Xu, Shiqi [1 ,2 ]
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[3] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[4] Shanghai Jieneng Automot Technol Co Ltd, Shanghai 201804, Peoples R China
[5] China North Vehicle Res Inst, State Assigned Elect Vehicle Power Battery Testin, Beijing 100072, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Lithium-ion battery; Cathode materials; Overcharge; Thermal runaway; Overcharge tolerance; Safety assessment; IN-SITU DETECTION; LI(NI0.6CO0.2MN0.2)O-2 CATHODE; FAILURE-MECHANISM; POUCH CELLS; HIGH-POWER; ABUSE; BATTERIES; STABILITY; LIFEPO4;
D O I
10.1016/j.jechem.2020.07.028
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this paper, overcharge behaviors and thermal runaway (TR) features of large format lithium-ion (Li-ion) cells with different cathode materials (LiFePO4 LFP), Li[Ni1/3Co1/3Mn1/3]O-2 (NCM111), Li [Ni0.6Co0.2Mn0.2]O-2 (NCM622) and Li[Ni0.8Co0.4Mn0.1]O-2 (NCM811)) were investigated. The results showed that, under the same overcharge condition, the TR of LFP Li-ion cell occurred earlier compared with the NCM Li-ion cells, indicating its poor overcharge tolerance and high TR risk. However, when TR occurred, LFP Li-ion cell exhibited lower maximum temperature and mild TR response. All NCM Li-ion cells caught fire or exploded during TR, while the LFP Li-ion cell only released a large amount of smoke without fire. According to the overcharge behaviors and TR features, a safety assessment score system was proposed to evaluate the safety of the cells. In short, NCM Li-ion cells have better performance in energy density and overcharge tolerance (or low TR risk), while LFP Li-ion cell showed less severe response to overcharging (or less TR hazards). For NCM Li-ion cells, as the ratio of nickel in cathode material increases, the thermal stability of the cathode materials becomes poorer, and the TR hazards increase. Such a comparison study on large format Li-ion cells with different cathode materials can provide deeper insights into the overcharge behaviors and TR features, and provide guidance for engineers to reasonably choose battery materials in automotive applications. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [41] Thermal runaway behavior of lithium-ion batteries in different charging states under low pressure
    Xie, Song
    Sun, Jian
    Chen, Xiantao
    He, Yuanhua
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 5795 - 5805
  • [42] Smart materials for safe lithium-ion batteries against thermal runaway
    Yu Ou
    Pan Zhou
    Wenhui Hou
    Xiao Ma
    Xuan Song
    Shuaishuai Yan
    Yang Lu
    Kai Liu
    Journal of Energy Chemistry, 2024, 94 (07) : 360 - 392
  • [43] Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery
    Zhang, Qingsong
    Liu, Tiantian
    Wang, Qiong
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [44] Study on the suppression of thermal runaway of lithium-ion battery by water mist with different additives
    Li, Lixia
    Chen, Zhen
    Lu, Yuan
    Zang, Pengju
    Zhan, Wang
    Cheng, Yuhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11349 - 11362
  • [45] Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge
    Wang, Cong-jie
    Zhu, Yan-li
    Gao, Fei
    Bu, Xin-ya
    Chen, Heng-shuai
    Quan, Ting
    Xu, Yi-bo
    Jiao, Qing-jie
    APPLIED ENERGY, 2022, 328
  • [46] Analysis of the Thermal Runaway Mitigation Performances of Dielectric Fluids During Overcharge Abuse Tests of Lithium-Ion Cells with Lithium Titanate Oxide Anodes
    Menale, Carla
    Mancino, Antonio Nicolo
    Vitiello, Francesco
    Sglavo, Vincenzo
    Vellucci, Francesco
    Caiazzo, Laura
    Bubbico, Roberto
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (12):
  • [47] Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells
    Larsson, Fredrik
    Mellander, Bengt-Erik
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) : A1611 - A1617
  • [48] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [49] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [50] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):