Irrationality proof of certain Lambert series using little q-Jacobi polynomials

被引:1
|
作者
Coussement, J. [1 ]
Smet, C. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
关键词
Pade approximation; Little q-Jacobi polynomials; Irrationality; Measure of irrationality; q-series; Q-HARMONIC SERIES; Q-LOGARITHMS;
D O I
10.1016/j.cam.2009.02.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the Pade technique to find rational approximations to h(+/-)(q(1), q(2)) = (k=1)Sigma(infinity) q(1)(k)/1 +/- q(2)(k), 0 < q(1), q(2) < 1, q(1) is an element of Q, q(2) = 1/p(2), p(2) is an element of N\ {1}. A separate section is dedicated to the special case q(i) = q(ri), r(i) is an element of N, q = 1/p, p is an element of N\ {1}. In this construction we make use of little q-Jacobi polynomials. Our rational approximations are good enough to prove the irrationality of h(+/-) (q(1), q(2)) and give an upper bound for the irrationality measure. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:680 / 690
页数:11
相关论文
共 50 条
  • [31] MOMENTS OF q-JACOBI POLYNOMIALS AND q-ZETA VALUES
    Chapoton, Frederic
    Krattenthaler, Christian
    Zeng, Jiang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2024, 19 (04) : 110 - 117
  • [32] A q-deformed e(4) and continuous q-Jacobi polynomials
    Floreanini, R
    LeTourneux, J
    Vinet, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) : 4135 - 4149
  • [33] Determinantal measures related to big q-Jacobi polynomials
    Gorin, V. E.
    Olshanski, G. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2015, 49 (03) : 214 - 217
  • [34] Universal T-matrix, representations of OSpq(1/2) and little Q-Jacobi polynomials
    Aizawa, N.
    Chakrabarti, R.
    Mohammed, S. S. Naina
    Segar, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [35] Transmutation kernels for the little q-Jacobi function transform
    Koelink, E
    Rosengren, H
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (02) : 703 - 738
  • [36] SOME FORMULAS INVOLVING Q-JACOBI AND RELATED POLYNOMIALS
    SRIVASTAVA, HM
    JAIN, VK
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1990, 157 : 63 - 75
  • [37] Determinantal measures related to big q-Jacobi polynomials
    V. E. Gorin
    G. I. Olshanski
    Functional Analysis and Its Applications, 2015, 49 : 214 - 217
  • [38] ASYMPTOTICS OF THE ASKEY-WILSON AND Q-JACOBI POLYNOMIALS
    ISMAIL, MEH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) : 1475 - 1482
  • [39] On the irrationality of a certain q series
    Borwein, PB
    Zhou, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) : 1605 - 1613
  • [40] Structure relations for the bivariate big q-Jacobi polynomials
    Lewanowicz, Stanislaw
    Wozny, Pawel
    Nowak, Rafal
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8790 - 8802