A higher-order accuracy lattice Boltzmann model for the wave equation

被引:5
|
作者
Zhang, Jianying [1 ]
Yan, Guangwu [1 ]
Dong, Yinfeng [1 ]
机构
[1] Jilin Univ, Dept Mech & Engn Math, Coll Math, Changchun 130012, Peoples R China
关键词
lattice Boltzmann model; higher-order moment; wave equation;
D O I
10.1002/fld.1981
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A lattice Boltzmann model with higher-order accuracy for the wave motion is proposed. The new model is based on the technique of the higher-order moment of-equilibrium distribution functions and a series of lattice Boltzmann equations in different time scales. The forms of moments are derived from the binary wave equation by designing the higher-order dissipation and dispersion terms. The numerical results agree well with classical ones. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:683 / 697
页数:15
相关论文
共 50 条
  • [21] Lattice Boltzmann model for the simulation of the wave equation in curvilinear coordinates
    Velasco, A. M.
    Munoz, J. D.
    Mendoza, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 76 - 97
  • [22] Higher-order dissipative anisotropic magnetohydrodynamics from the Boltzmann-Vlasov equation
    Molnar, Etele
    Rischke, Dirk H.
    PHYSICAL REVIEW D, 2025, 111 (03)
  • [23] ON THE SOLUTION OF THE ELECTRON BOLTZMANN-EQUATION IN HIGHER-ORDER LEGENDRE POLYNOMIAL EXPANSION
    WINKLER, R
    WILHELM, J
    HESS, A
    BEITRAGE AUS DER PLASMAPHYSIK-CONTRIBUTIONS TO PLASMA PHYSICS, 1983, 23 (05): : 483 - 496
  • [24] Solitary wave interaction and evolution for a higher-order Hirota equation
    Hoseini, S. M.
    Marchant, T. R.
    WAVE MOTION, 2006, 44 (02) : 92 - 106
  • [25] CHAOS IN A NONLINEAR-WAVE EQUATION WITH HIGHER-ORDER DISPERSION
    NAGASHIMA, H
    PHYSICS LETTERS A, 1984, 105 (09) : 439 - 442
  • [26] On a KdV equation with higher-order nonlinearity: Traveling wave solutions
    Gomez Sierra, Cesar A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5330 - 5332
  • [27] HIGHER-ORDER COMPACT IMPLICIT SCHEMES FOR WAVE-EQUATION
    CIMENT, M
    LEVENTHAL, SH
    MATHEMATICS OF COMPUTATION, 1975, 29 (132) : 985 - 994
  • [28] HIGHER-ORDER PARABOLIC APPROXIMATIONS OF THE REDUCED WAVE-EQUATION
    MCANINCH, GL
    JOURNAL OF SOUND AND VIBRATION, 1986, 104 (03) : 411 - 424
  • [29] ON THE INTEGRABLE MODELS OF THE HIGHER-ORDER WATER-WAVE EQUATION
    DANIEL, M
    PORSEZIAN, K
    LAKSHMANAN, M
    PHYSICS LETTERS A, 1993, 174 (03) : 237 - 240
  • [30] Localized wave solutions of a higher-order short pulse equation
    Li, Xinyue
    Zhang, Zhixin
    Zhao, Qiulan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):