Phylogenetic diversity and the maximum coverage problem

被引:2
|
作者
Moulton, Vincent [1 ]
Spillner, Andreas [2 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[2] Ernst Moritz Arndt Univ Greifswald, Dept Math & Comp Sci, D-17489 Greifswald, Germany
基金
英国工程与自然科学研究理事会;
关键词
Phylogenetic diversity; Greedoid; Hypergraph; Maximum coverage; GREEDY ALGORITHM; LOCATION; SYSTEMS;
D O I
10.1016/j.aml.2009.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a weighted hypergraph (H, omega), with vertex set X, edge set E, and weighting omega : E --> R(>= 0), the maximum coverage problem is to find a k-element subset Y subset of X that maximiz-es the total weight of those edges that have non-empty intersection with Y among all k-element subsets of X. Such a subset Y is called optimal. Recently, within the field of phylogenetics it has been shown that for certain weighted hypergraphs coming from phylogenetic trees the collection of optimal subsets of X forms a so-called strong greedoid. We call hypergraphs having this latter property strongly greedy. In this note we characterize the r-uniform hypergraphs H with unit edge weights that are strongly greedy in the case where r is a prime number. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1496 / 1499
页数:4
相关论文
共 50 条
  • [21] Hybrid heuristics for the maximum diversity problem
    Gallego, Micael
    Duarte, Abraham
    Laguna, Manuel
    Marti, Rafael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (03) : 411 - 426
  • [22] Heuristics and metaheuristics for the maximum diversity problem
    Marti, Rafael
    Gallego, Micael
    Duarte, Abraham
    Pardo, Eduardo G.
    JOURNAL OF HEURISTICS, 2013, 19 (04) : 591 - 615
  • [23] Computational aspects of the maximum diversity problem
    Ghosh, JB
    OPERATIONS RESEARCH LETTERS, 1996, 19 (04) : 175 - 181
  • [24] New heuristics for the maximum diversity problem
    Silva, Geiza C.
    de Andrade, Marcos R. Q.
    Ochi, Luiz S.
    Martins, Simone L.
    Plastino, Alexandre
    JOURNAL OF HEURISTICS, 2007, 13 (04) : 315 - 336
  • [25] An improved formulation for the maximum coverage patrol routing problem
    Capar, Ibrahim
    Keskin, Burcu B.
    Rubin, Paul A.
    COMPUTERS & OPERATIONS RESEARCH, 2015, 59 : 1 - 10
  • [26] Maximum lifetime coverage problem with battery recovery effect
    Fu, Norie
    Kakimura, Naonori
    Kimura, Kei
    Suppakitpaisarn, Vorapong
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2018, 18 : 1 - 13
  • [27] Maximum Coverage Heuristics (MCH) for Target Coverage Problem in Wireless Sensor Network
    Bajaj, Dimple
    Manju
    SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 300 - 305
  • [28] The Maximum Weighted Submatrix Coverage Problem: A CP Approach
    Derval, Guillaume
    Branders, Vincent
    Dupont, Pierre
    Schaus, Pierre
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2019, 2019, 11494 : 258 - 274
  • [29] Generation of an equipment module database - A maximum coverage problem
    Eilermann, Martin
    Schach, Constantin
    Sander, Peer
    Bramsiepe, Christian
    Schembecker, Gerhard
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2019, 148 : 164 - 168
  • [30] New variations of the maximum coverage facility location problem
    Bhattacharya, Bhaswar B.
    Nandy, Subhas C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 224 (03) : 477 - 485