Image super-resolution reconstruction based on feature map attention mechanism

被引:183
|
作者
Chen, Yuantao [1 ,2 ]
Liu, Linwu [1 ,2 ]
Phonevilay, Volachith [1 ,2 ]
Gu, Ke [1 ]
Xia, Runlong [3 ]
Xie, Jingbo [3 ]
Zhang, Qian [4 ]
Yang, Kai [4 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Hunan, Peoples R China
[3] Hunan Inst Sci & Tech Informat, Changsha 410001, Hunan, Peoples R China
[4] Hunan ZOOMLION Intelligent Technol Corp Ltd, Dept Elect Prod, Changsha 410005, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution reconstruction; Feature map attention mechanism; Multiple information extraction; Deep learning methods; Multi-scale low-resolution images; ALGORITHM; NETWORK;
D O I
10.1007/s10489-020-02116-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve the issue of low-frequency and high-frequency components from feature maps being treated equally in existing image super-resolution reconstruction methods, the paper proposed an image super-resolution reconstruction method using attention mechanism with feature map to facilitate reconstruction from original low-resolution images to multi-scale super-resolution images. The proposed model consists of a feature extraction block, an information extraction block, and a reconstruction module. Firstly, the extraction block is used to extract useful features from low-resolution images, with multiple information extraction blocks being combined with the feature map attention mechanism and passed between feature channels. Secondly, the interdependence is used to adaptively adjust the channel characteristics to restore more details. Finally, the reconstruction module reforms different scales high-resolution images. The experimental results can demonstrate that the proposed method can effectively improve not only the visual effect of images but also the results on the Set5, Set14, Urban100, and Manga109. The results can demonstrate the proposed method has structurally similarity to the image reconstruction methods. Furthermore, the evaluating indicator of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) has been improved to a certain degree, while the effectiveness of using feature map attention mechanism in image super-resolution reconstruction applications is useful and effective.
引用
收藏
页码:4367 / 4380
页数:14
相关论文
共 50 条
  • [21] Image super-resolution method based on attention aggregation hierarchy feature
    Jianxin Wang
    Yongsong Zou
    Honglin Wu
    The Visual Computer, 2024, 40 : 2655 - 2666
  • [22] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [23] Based on the technique of regularization MAP super-resolution image reconstruction algorithm
    Zha, Zhiyuan
    Liu, Hui
    Li, Junkui
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 31 - 33
  • [24] Image super-resolution reconstruction method based on residual mechanism
    Wang, Yetong
    Xing, Kongduo
    Wang, Baji
    Hai, Sheng
    Li, Jiayao
    Deng, MingXin
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [25] Image super-resolution reconstruction under partial convolution and agent attention mechanism
    Chen, Yupeng
    Li, Haibo
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [26] IMAGE SUPER-RESOLUTION RECONSTRUCTION USING MAP ESTIMATION
    Lu, Xin-Long
    Chen, Sheng-Yong
    Wang, Xin
    Liu, Sheng
    Yao, Chunyan
    Huang, Xianping
    PROCEEDINGS 27TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2013, 2013, : 838 - +
  • [27] MAP super-resolution reconstruction of remote sensing image
    Liu Tao
    Qian Feng
    Zhang Bao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2018, 33 (10) : 884 - 892
  • [28] Image super-resolution reconstruction based on self-attention GAN
    Wang X.-S.
    Chao J.
    Cheng Y.-H.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (06): : 1324 - 1332
  • [29] Image Super-Resolution Reconstruction Based on the Lightweight Hybrid Attention Network
    Chu, Yuezhong
    Wang, Kang
    Zhang, Xuefeng
    Heng, Liu
    ADVANCES IN MULTIMEDIA, 2024, 2024
  • [30] CT image super-resolution reconstruction based on global hybrid attention
    Chi, Jianning
    Sun, Zhiyi
    Wang, Huan
    Lyu, Pengfei
    Yu, Xiaosheng
    Wu, Chengdong
    Computers in Biology and Medicine, 2022, 150