Image super-resolution reconstruction based on feature map attention mechanism

被引:183
|
作者
Chen, Yuantao [1 ,2 ]
Liu, Linwu [1 ,2 ]
Phonevilay, Volachith [1 ,2 ]
Gu, Ke [1 ]
Xia, Runlong [3 ]
Xie, Jingbo [3 ]
Zhang, Qian [4 ]
Yang, Kai [4 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Hunan, Peoples R China
[3] Hunan Inst Sci & Tech Informat, Changsha 410001, Hunan, Peoples R China
[4] Hunan ZOOMLION Intelligent Technol Corp Ltd, Dept Elect Prod, Changsha 410005, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution reconstruction; Feature map attention mechanism; Multiple information extraction; Deep learning methods; Multi-scale low-resolution images; ALGORITHM; NETWORK;
D O I
10.1007/s10489-020-02116-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve the issue of low-frequency and high-frequency components from feature maps being treated equally in existing image super-resolution reconstruction methods, the paper proposed an image super-resolution reconstruction method using attention mechanism with feature map to facilitate reconstruction from original low-resolution images to multi-scale super-resolution images. The proposed model consists of a feature extraction block, an information extraction block, and a reconstruction module. Firstly, the extraction block is used to extract useful features from low-resolution images, with multiple information extraction blocks being combined with the feature map attention mechanism and passed between feature channels. Secondly, the interdependence is used to adaptively adjust the channel characteristics to restore more details. Finally, the reconstruction module reforms different scales high-resolution images. The experimental results can demonstrate that the proposed method can effectively improve not only the visual effect of images but also the results on the Set5, Set14, Urban100, and Manga109. The results can demonstrate the proposed method has structurally similarity to the image reconstruction methods. Furthermore, the evaluating indicator of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) has been improved to a certain degree, while the effectiveness of using feature map attention mechanism in image super-resolution reconstruction applications is useful and effective.
引用
收藏
页码:4367 / 4380
页数:14
相关论文
共 50 条
  • [1] Image super-resolution reconstruction based on feature map attention mechanism
    Yuantao Chen
    Linwu Liu
    Volachith Phonevilay
    Ke Gu
    Runlong Xia
    Jingbo Xie
    Qian Zhang
    Kai Yang
    Applied Intelligence, 2021, 51 : 4367 - 4380
  • [2] Multidimensional attention mechanism and selective feature fusion for image super-resolution reconstruction
    Wen J.
    Shao J.
    Liu J.
    Shao J.
    Feng Y.
    Ye R.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (17): : 2584 - 2597
  • [3] MAP Based Super-resolution Image Reconstruction Method
    He, Panli
    Wang, Boyang
    Liu, Xiaoxia
    Han, Xiaowei
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2754 - 2757
  • [4] MAP-Based Image Super-Resolution Reconstruction
    Liu, Xueting
    Song, Daojin
    Dong, Chuandai
    Li, Hongkui
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 27, 2008, 27 : 208 - +
  • [5] Super-Resolution Image Reconstruction Based on Residual Channel Attention and Multilevel Feature Fusion
    Xi Zhihong
    Yuan Kunpeng
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (04)
  • [6] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Xin Yang
    Hengrui Li
    Xiaochuan Li
    Cluster Computing, 2022, 25 : 3977 - 3992
  • [7] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Yang, Xin
    Li, Hengrui
    Li, Xiaochuan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3977 - 3992
  • [8] Light Field Image Super-Resolution Based on Feature Interaction Fusion and Attention Mechanism
    Xu Xinyi
    Deng Huiping
    Xiang Sen
    Wu Jin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [9] Image Super-Resolution Network Based on Feature Fusion Attention
    Zou, Changjun
    Ye, Lintao
    JOURNAL OF SENSORS, 2022, 2022
  • [10] Image Super-Resolution Reconstruction Based on Disparity Map and CNN
    Liu, Yujia
    Xu, Xiping
    Xu, Jiahong
    Jiang, Zhaoguo
    IEEE ACCESS, 2018, 6 : 53489 - 53498