A Multi-Agent Reinforcement Learning Algorithm for Disambiguation in a Spoken Dialogue System

被引:2
|
作者
Wang, Fangju [1 ]
机构
[1] Univ Guelph, Sch Comp Sci, Guelph, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Natural language processing; automatic speech recognition; multi-agent reinforcement learning; spoken dialogue system; disambiguation;
D O I
10.1109/TAAI.2010.29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A spoken dialogue system (SDS) communicates with its user(s) in a spoken natural language. It responds to user speech input for answering questions, providing advice, and so on. Correctly understanding user input is very important to system performance. A key issue in understanding user input is handling ambiguity since any natural language is ambiguous. In our research, we develop a novel multi-agent reinforcement learning algorithm for disambiguation in a spoken dialogue system. In the algorithm, multiple agents learn knowledge about user behavior in activities and language use, and the knowledge is used to handle ambiguity. In this paper, we introduce the multi-agent reinforcement learning algorithm, and describe a spoken dialogue system for mathematics tutoring that we build to implement and experiment the algorithm.
引用
收藏
页码:116 / 123
页数:8
相关论文
共 50 条
  • [21] Empirical evaluation of a reinforcement learning spoken dialogue system
    Singh, S
    Kearns, M
    Litman, DJ
    Walker, MA
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 645 - 651
  • [22] Evaluation of a hierarchical reinforcement learning spoken dialogue system
    Cuayahuitl, Heriberto
    Renals, Steve
    Lemon, Oliver
    Shimodaira, Hiroshi
    COMPUTER SPEECH AND LANGUAGE, 2010, 24 (02): : 395 - 429
  • [23] A novel multi-agent Q-learning algorithm in cooperative multi-agent system
    Ou, HT
    Zhang, WD
    Zhang, WY
    Xu, XM
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 272 - 276
  • [24] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [25] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [26] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [27] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [28] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [29] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [30] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635