A Multi-Agent Reinforcement Learning Algorithm for Disambiguation in a Spoken Dialogue System

被引:2
|
作者
Wang, Fangju [1 ]
机构
[1] Univ Guelph, Sch Comp Sci, Guelph, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Natural language processing; automatic speech recognition; multi-agent reinforcement learning; spoken dialogue system; disambiguation;
D O I
10.1109/TAAI.2010.29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A spoken dialogue system (SDS) communicates with its user(s) in a spoken natural language. It responds to user speech input for answering questions, providing advice, and so on. Correctly understanding user input is very important to system performance. A key issue in understanding user input is handling ambiguity since any natural language is ambiguous. In our research, we develop a novel multi-agent reinforcement learning algorithm for disambiguation in a spoken dialogue system. In the algorithm, multiple agents learn knowledge about user behavior in activities and language use, and the knowledge is used to handle ambiguity. In this paper, we introduce the multi-agent reinforcement learning algorithm, and describe a spoken dialogue system for mathematics tutoring that we build to implement and experiment the algorithm.
引用
收藏
页码:116 / 123
页数:8
相关论文
共 50 条
  • [1] Improving reinforcement learning algorithm using emotions in a multi-agent system
    Daneshvar, R
    Lucas, C
    INTELLIGENT VIRTUAL AGENTS, 2003, 2792 : 361 - 362
  • [2] LMRL: A multi-agent reinforcement learning model and algorithm
    Wang, BN
    Gao, Y
    Chen, ZQ
    Xie, JY
    Chen, SF
    Third International Conference on Information Technology and Applications, Vol 1, Proceedings, 2005, : 303 - 307
  • [3] A new accelerating algorithm for multi-agent reinforcement learning
    张汝波
    仲宇
    顾国昌
    Journal of Harbin Institute of Technology, 2005, (01) : 48 - 51
  • [4] Sequence to Sequence Multi-agent Reinforcement Learning Algorithm
    Shi T.
    Wang L.
    Huang Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (03): : 206 - 213
  • [5] Cooperative Multi-Agent Reinforcement Learning with Conversation Knowledge for Dialogue Management
    Lei, Shuyu
    Wang, Xiaojie
    Yuan, Caixia
    APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [6] Collaborative Multi-Agent Dialogue Model Training Via Reinforcement Learning
    Papangelis, Alexandros
    Wang, Yi-Chia
    Molino, Piero
    Tur, Gokhan
    20TH ANNUAL MEETING OF THE SPECIAL INTEREST GROUP ON DISCOURSE AND DIALOGUE (SIGDIAL 2019), 2019, : 92 - 102
  • [7] Cooperative Reinforcement Learning Algorithm to Distributed Power System Based on Multi-Agent
    Gao, La-mei
    Zeng, Jun
    Wu, Jie
    Li, Min
    2009 3RD INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS: ELECTRIC VEHICLE AND GREEN ENERGY, 2009, : 53 - 53
  • [8] Effect of sympathetic relation and unsympathetic relation in multi-agent spoken dialogue system
    Shibahara, Yuma
    Yamamoto, Kazumasa
    Nakagawa, Seiichi
    2016 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS - CONCEPTS, THEORY AND APPLICATION (ICAICTA), 2016,
  • [9] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [10] The Cooperative Reinforcement Learning in a Multi-Agent Design System
    Liu, Hong
    Wang, Jihua
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 139 - 144