Indecomposable injective modules and a theorem of Kaplansky

被引:6
|
作者
Faith, C [1 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
关键词
D O I
10.1081/AGB-120016019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an unpublished result dating back to the middle 50's, Kaplansky proved the following: Kaplansky's Theorem. A commutative ring R is von Neumann regular (= VNR) iff every simple R-module is injective (= R is a V-ring), and iff every local ring R-m is a field. In 1972, the author (F[72]) proved a generalization (Theorem 1.2 below), namely that every VNR with Artinian primitive factor rings is a V-ring. The main result of the present paper is related to a question following Corollary 9 of the author's paper (F[74]) (for commutative rings) about the structure of indecomposable injective modules. Theorem. If R is a commutative ring, then R is a VNR, that is, a V-ring, iff every, subdirectly irreducible injective R-module E has a skewfield endomorphism ring. The proof devolves into showing that R is VNR, hence a V-ring by Kaplansky's Theorem. The method is showing that every ideal I such that R/I is subdirectly irreducible is prime, and hence by Birkhoffs Theorem, every ideal of R is semiprime, equivalently, idempotent. This implies that R is VNR.
引用
收藏
页码:5875 / 5889
页数:15
相关论文
共 50 条
  • [41] INDECOMPOSABLE MODULES - MODULES WITH CORES
    GORDON, R
    GREEN, EL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (04) : 590 - 592
  • [42] INDECOMPOSABLE INJECTIVE MOLDULES ON DEDEKIND RINGS
    TOUSNAKH.P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (23): : 1144 - &
  • [43] A new version of a theorem of Kaplansky
    Wang, Fanggui
    Qiao, Lei
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3415 - 3428
  • [44] CYCLE-FINITE ALGEBRAS WITH ALMOST ALL INDECOMPOSABLE MODULES OF PROJECTIVE OR INJECTIVE DIMENSION AT MOST ONE
    Skowyrski, Adam
    COLLOQUIUM MATHEMATICUM, 2013, 132 (02) : 239 - 270
  • [45] Around the Baer–Kaplansky Theorem
    Krylov P.A.
    Tuganbaev A.A.
    Tsarev A.V.
    Journal of Mathematical Sciences, 2021, 256 (3) : 278 - 298
  • [46] A KAPLANSKY THEOREM FOR JB*-TRIPLES
    Fernandez-Polo, Francisco J.
    Garces, Jorge J.
    Peralta, Antonio M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3179 - 3191
  • [47] ON INJECTIVE MODULES
    HARUI, H
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1969, 21 (04) : 574 - +
  • [48] INJECTIVE MODULES
    HANNA, A
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (03): : 297 - 298
  • [49] τ-injective modules
    Charalambides, Stelios
    Clark, John
    MODULES AND COMODULES, 2008, : 143 - 168
  • [50] FAMILY OF INDECOMPOSABLE MODULES
    HUMPHREYS, JE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A550 - A551