Pagenumber of pathwidth-k graphs and strong pathwidth-k graphs

被引:6
|
作者
Togasaki, M [1 ]
Yamazaki, K [1 ]
机构
[1] Gunma Univ, Dept Comp Sci, Kiryu, Gumma 3768515, Japan
关键词
pagenumber; book embedding; pathwidth; strong pathwidth;
D O I
10.1016/S0012-365X(02)00542-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the maximum pagenumber of the graphs with pathwidth k is k and that the maximum pagenumber of the graphs with strong pathwidth k is in between [3(k - 1)/2] and 3 [k/2]. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 50 条
  • [31] APPROXIMATING TREEWIDTH AND PATHWIDTH OF SOME CLASSES OF PERFECT GRAPHS
    KLOKS, T
    BODLAENDER, H
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 650 : 116 - 125
  • [32] A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS WITH APPLICATIONS TO EXACT ALGORITHMS
    Kneis, Joachim
    Moelle, Daniel
    Richter, Stefan
    Rossmanith, Peter
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 407 - 427
  • [33] The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs
    Hatanaka, Tatsuhiko
    Ito, Takehiro
    Zhou, Xiao
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 314 - 328
  • [34] THE PAGENUMBER OF THE CLASS OF BANDWIDTH-K GRAPHS IS K-1
    SWAMINATHAN, R
    GIRIRAJ, D
    BHATIA, DK
    INFORMATION PROCESSING LETTERS, 1995, 55 (02) : 71 - 74
  • [35] Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth
    Dyer, Martin
    Greenhill, Catherine
    Mueller, Haiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 : 298 - 310
  • [36] Computing the pathwidth of directed graphs with small vertex cover
    Kobayashi, Yasuaki
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 310 - 312
  • [37] Counting independent sets in graphs with bounded bipartite pathwidth
    Dyer, Martin
    Greenhill, Catherine
    Muller, Haiko
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (02) : 204 - 237
  • [38] On exploring always-connected temporal graphs of small pathwidth
    Bodlaender, Hans L.
    van der Zanden, Tom C.
    INFORMATION PROCESSING LETTERS, 2019, 142 : 68 - 71
  • [39] Lower bounds on the pathwidth of some grid-like graphs
    Ellis, John
    Warren, Robert
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (05) : 545 - 555
  • [40] Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques
    Kaplan, H
    Shamir, R
    SIAM JOURNAL ON COMPUTING, 1996, 25 (03) : 540 - 561