Mixed Type Hermite-Pade Approximants for a Nikishin System

被引:10
|
作者
Lysov, V. G. [1 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appl Math, Miusskaya Pl 4, Moscow 125047, Russia
关键词
mixed type Hermite– Padé approximants; Nikishin system; perfect system; vector logarithmic-potential equilibrium problem; convergence of rational approximants; matrix Riemann– Hilbert problem; STRONG ASYMPTOTICS; ORTHOGONAL POLYNOMIALS;
D O I
10.1134/S0081543820060127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of mixed type Hermite-Pade approximants and prove that the Nikishin system is perfect for this problem. Using the method of a vector equilibrium problem, we find weak asymptotics and prove the convergence of the approximants along any rays in the index table. We also present an equivalent statement in the form of a matrix Riemann-Hilbert problem.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [21] Asymptotics of diagonal Hermite-Pade approximants to e(z)
    Wielonsky, F
    JOURNAL OF APPROXIMATION THEORY, 1997, 90 (02) : 283 - 298
  • [22] Incomplete Pade approximation and convergence of row sequences of Hermite-Pade approximants
    Cacoq, J.
    de la Calle Ysern, B.
    Lopez Lagomasino, G.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 59 - 77
  • [24] On the convergence of multi-level Hermite-Pade approximants
    Ricardo, L. G. Gonzalez
    Lagomasino, G. Lopez
    Peralta, S. Medina
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 440
  • [25] CONVERGENCE THEOREMS FOR ROWS OF HERMITE-PADE INTEGRAL APPROXIMANTS
    BAKER, GA
    GRAVESMORRIS, PR
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (01) : 41 - 69
  • [26] Hermite-Pade approximants to exponential functions and an inequality of Mahler
    Wielonsky, F
    JOURNAL OF NUMBER THEORY, 1999, 74 (02) : 230 - 249
  • [27] Discrete integrable systems generated by Hermite-Pade approximants
    Aptekarev, Alexander I.
    Derevyagin, Maxim
    Van Assche, Walter
    NONLINEARITY, 2016, 29 (05) : 1487 - 1506
  • [28] Strong Asymptotics of Hermite-Pade Approximants for Angelesco Systems
    Yattselev, Maxim L.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (05): : 1159 - 1200
  • [29] SOME CONVERGENCE AND DIVERGENCE THEOREMS FOR HERMITE-PADE APPROXIMANTS
    BAKER, GA
    GRAVESMORRIS, PR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (03) : 285 - 293
  • [30] Direct and inverse results for multipoint Hermite-Pade approximants
    Bosuwan, N.
    Lopez Lagomasino, G.
    Zaldivar Gerpe, Y.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (02) : 761 - 779