Perivascular adipose tissue-derived stromal cells contribute to vascular remodeling during aging

被引:48
|
作者
Pan, Xiao-Xi [1 ]
Ruan, Cheng-Chao [1 ]
Liu, Xiu-Ying [2 ]
Kong, Ling-Ran [1 ]
Ma, Yu [1 ]
Wu, Qi-Hong [1 ]
Li, Hai-Qing [3 ]
Sun, Yan-Jun [3 ]
Chen, An-Qing [3 ]
Zhao, Qiang [3 ]
Wu, Fang [4 ]
Wang, Xiu-Jie [2 ]
Wang, Ji-Guang [1 ]
Zhu, Ding-Liang [1 ]
Gao, Ping-Jin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Dept Hypertens,State Key Lab Med Genom,Ruijin Hos, Shanghai Key Lab Hypertens,Shanghai Inst Hyperten, Shanghai, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, Key Lab Genet Network Biol, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Cardiac Surg, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Geriatr, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
adipocytes; aging; neointimal hyperplasia; perivascular adipose tissue; perivascular adipose tissue-derived stromal cells; peroxisome proliferator-activated receptor-gamma coactivator-1 alpha; PROGENITOR CELLS; FAT; ADIPONECTIN; ARTERIAL; MECHANISMS; DISEASE; WALL;
D O I
10.1111/acel.12969
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging-related vascular diseases. Here, we take advantage of single-cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging-induced loss of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1 alpha) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1 alpha improved hPVASC delivery-induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1 alpha in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Autologous Adipose Tissue-Derived Cells: Are We Talking About Adipose Derived Stem Cells, Stromal Vascular Fraction, or Coleman Fat Grafting?
    Magalon, J.
    Daumas, A.
    Veran, J.
    Magalon, G.
    Rossi, P.
    Granel, B.
    Sabatier, F.
    CELL TRANSPLANTATION, 2015, 24 (12) : 2667 - 2668
  • [22] Adipose Tissue-Derived Stromal Cells Protect Hair Cells From Aminoglycoside
    Yoshida, Atsuhiro
    Kitajiri, Shin-Ichiro
    Nakagawa, Takayuki
    Hashido, Kento
    Inaoka, Takatoshi
    Ito, Juichi
    LARYNGOSCOPE, 2011, 121 (06): : 1281 - 1286
  • [23] Perivascular scaffolds loaded with adipose tissue-derived stromal cells attenuate development and progression of abdominal aortic aneurysm in rats
    Parvizi, M.
    Petersen, A. H.
    van Spreuwel-Goossens, C. A. F. M.
    Kluijtmans, S. G. J. M.
    Harmsen, M. C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (09) : 2494 - 2506
  • [24] Surface protein characterization of human adipose tissue-derived stromal cells
    Gronthos, S
    Franklin, DM
    Leddy, HA
    Robey, PG
    Storms, RW
    Gimble, JM
    JOURNAL OF CELLULAR PHYSIOLOGY, 2001, 189 (01) : 54 - 63
  • [25] Effects of different sera on adipose tissue-derived mesenchymal stromal cells
    Tunaitis, Virginijus
    Borutinskaite, Veronika
    Navakauskiene, Ruta
    Treigyte, Grazina
    Unguryte, Ausra
    Aldonyte, Ruta
    Magnusson, Karl-Eric
    Pivoriunas, Augustas
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (09) : 733 - 746
  • [26] Human adipose tissue-derived mesenchymal stromal cells and their phagocytic capacity
    Ruiz, Victor J. Costela
    Rodriguez, Lucia Melguizo
    Montes, Rebeca Illescas
    Recio, Enrique Garcia
    Santiago, Salvador Arias
    Ruiz, Concepcion
    Bertos, Elvira De Luna
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (01) : 178 - 185
  • [27] Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo
    Erickson, GR
    Gimble, JM
    Franklin, DM
    Rice, HE
    Awad, H
    Guilak, F
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 290 (02) : 763 - 769
  • [28] Differential Effect of Leptin on Adipose Tissue-Derived Stromal Cells and Bone Marrow-Derived Stromal Cells
    Jang, Hoon
    Hong, Seong Chul
    FASEB JOURNAL, 2009, 23
  • [29] Perivascular adipose tissue-derived Wnt5a as a regulator of human vascular disease pathogenesis
    Akoumianakis, I.
    Sanna, F.
    Margaritis, M.
    Herdman, L.
    Antonopoulos, A. S.
    Sayeed, R.
    Krasopoulos, G.
    Petrou, M.
    Channon, K. M.
    Antoniades, C.
    EUROPEAN HEART JOURNAL, 2018, 39 : 71 - 71
  • [30] Role of Perivascular Adipose Tissue-Derived Methyl Palmitate in Vascular Tone Regulation and Pathogenesis of Hypertension
    Lee, Yuan-Chieh
    Chang, Hsi-Hsien
    Chiang, Chih-Lung
    Liu, Chin-Hung
    Yeh, Jih-I
    Chen, Mei-Fang
    Chen, Po-Yi
    Kuo, Jon-Son
    Lee, Tony J. F.
    CIRCULATION, 2011, 124 (10) : 1160 - U195