Strongly regular graphs that are locally a disjoint union of hexagons

被引:2
|
作者
Peeters, R [1 ]
机构
[1] TILBURG UNIV,DEPT ECONOMETR,NL-5000 LE TILBURG,NETHERLANDS
关键词
D O I
10.1006/eujc.1996.0126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there are precisely two srg(64,18,2,6) that are locally a disjoint union of three hexagons and there are no srg(40,12,2,4) that are locally a disjoint union of two hexagons. As a side result, we obtain simple definitions for all 11 srg(64,18,2,6) that are 4-colorable. (C) 1997 Academic Press Limited.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 50 条
  • [31] On strongly regular graphs with μ=1
    Deutsch, J
    Fisher, PH
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (03) : 303 - 306
  • [32] PARTITIONING STRONGLY REGULAR GRAPHS
    NODA, R
    OSAKA JOURNAL OF MATHEMATICS, 1985, 22 (02) : 379 - 389
  • [33] Cyclotomy and Strongly Regular Graphs
    A.E. Brouwer
    R.M. Wilson
    Qing Xiang
    Journal of Algebraic Combinatorics, 1999, 10 : 25 - 28
  • [34] Directed strongly regular graphs with μ = λ
    Jorgensen, LK
    DISCRETE MATHEMATICS, 2001, 231 (1-3) : 289 - 293
  • [35] Regular star complements in strongly regular graphs
    Rowlinson, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1482 - 1488
  • [36] On vertex-disjoint paths in regular graphs
    Han, Jie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [37] Deza graphs: A generalization of strongly regular graphs
    Erickson, M
    Fernando, S
    Haemers, WH
    Hardy, D
    Hemmeter, J
    JOURNAL OF COMBINATORIAL DESIGNS, 1999, 7 (06) : 395 - 405
  • [38] Short disjoint paths in locally connected graphs
    Chen, Chuanping
    Cada, Roman
    Kaiser, Tomas
    Ryjacek, Zdenek
    GRAPHS AND COMBINATORICS, 2007, 23 (05) : 509 - 519
  • [39] Short Disjoint Paths in Locally Connected Graphs
    Chuanping Chen
    Roman Čada
    Tomáš Kaiser
    Zdeněk Ryjáček
    Graphs and Combinatorics, 2007, 23 : 509 - 519
  • [40] STRONGLY REGULAR GRAPHS HAVING STRONGLY REGULAR SUB-CONSTITUENTS
    CAMERON, PJ
    GOETHALS, JM
    SEIDEL, JJ
    JOURNAL OF ALGEBRA, 1978, 55 (02) : 257 - 280