Privacy-Preserving Crowdsensing: Privacy Valuation, Network Effect, and Profit Maximization

被引:0
|
作者
Zhang, Mengyuan [1 ]
Yang, Lei [2 ]
Gong, Xiaowen [3 ]
Zhang, Junshan [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In spite of the pronounced benefit brought by crowdsensing, a user would not participate in sensing without adequate incentive, indicating that effective incentive design plays a critical role in making crowdsensing a reality. In this work, we examine the impact of two conflicting factors on incentives for users' participation: 1) the concern about privacy leakage and 2) the (positive) network effect from many sensing participants. The former factor hinders privacy-aware users from participating, whereas the latter encourages users' participation. Taking into consideration both factors, we devise a privacy-preserving crowdsensing scheme, in which a reverse 'privacy' auction is first run by the crowdsensing platform to select users based on their privacy valuations and the network effect. Then the trusted platform carries out differentially private data aggregation over the collected data such that the released sensing result remains useful for the task agent, while all participants' data privacy is guaranteed. A natural objective here is then to maximize the profit of the task agent, i.e., the difference between its utility and the total reward to the participants. To this end, the platform utilizes a random-sampling based mechanism for the 'privacy' auction, followed by a Laplace mechanism for data aggregation. We show that this auction mechanism design is 4-competitive, and further it exhibits desirable properties, including individual rationality, truthfulness, computational efficiency. Simulation results corroborate the theoretical properties of the proposed privacy-preserving crowdsensing scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Privacy-Preserving Data Aggregation over Incomplete Data for Crowdsensing
    Vakilinia, Iman
    Xin, Jiajun
    Li, Ming
    Guo, Linke
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [42] Fair payments for privacy-preserving aggregation of mobile crowdsensing data
    Dorsala, Mallikarjun Reddy
    Sastry, V. N.
    Chapram, Sudhakar
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 5478 - 5492
  • [43] A lightweight privacy-preserving truth discovery in mobile crowdsensing systems
    Wang, Taochun
    Xu, Nuo
    Zhang, Qiong
    Chen, Fulong
    Xie, Dong
    Zhao, Chuanxin
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2024, 83
  • [44] On Cooperative Obfuscation for Privacy-Preserving Task Recommendation in Mobile CrowdSensing
    Bassem, Christine
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 90 - 95
  • [45] Blockchain and Federated Edge Learning for Privacy-Preserving Mobile Crowdsensing
    Hu, Qin
    Wang, Zhilin
    Xu, Minghui
    Cheng, Xiuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12000 - 12011
  • [46] A Privacy-Preserving Incentive Mechanism for Mobile Crowdsensing Based on Blockchain
    Tong, Fei
    Zhou, Yuanhang
    Wang, Kaiming
    Cheng, Guang
    Niu, Jianyu
    He, Shibo
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5071 - 5085
  • [47] An efficient and privacy-preserving truth discovery scheme in crowdsensing applications
    Zhang, Chuan
    Xu, Chang
    Zhu, Liehuang
    Li, Yanwei
    Zhang, Can
    Wu, Huishu
    COMPUTERS & SECURITY, 2020, 97
  • [48] Fair Incentive Mechanism With Imperfect Quality in Privacy-Preserving Crowdsensing
    Li, Youqi
    Li, Fan
    Zhu, Liehuang
    Chen, Huijie
    Li, Ting
    Wang, Yu
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19) : 19188 - 19200
  • [49] Privacy-Preserving Mobile Crowdsensing for Located-Based Applications
    Ni, Jianbing
    Zhang, Kuan
    Lin, Xiaodong
    Xia, Qi
    Shen, Xuemin
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [50] Efficient Bilateral Privacy-Preserving Data Collection for Mobile Crowdsensing
    Wu, Axin
    Luo, Weiqi
    Yang, Anjia
    Zhang, Yinghui
    Zhu, Jianhao
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (03) : 865 - 877