Analysis of non-steady-state distribution functions for grain growth and coarsening

被引:4
|
作者
Fischer, F. D. [1 ]
Svoboda, J. [2 ]
Gamsjaeger, E. [1 ]
机构
[1] Univ Leoben, Inst Mech, A-8700 Leoben, Austria
[2] Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic
关键词
grain growth; coarsening; thermodynamics; modeling; distribution concept; POLYCRYSTALLINE MICRO STRUCTURES; AUTOMATED-ANALYSIS; SIMULATION; FRAMEWORK; MODEL;
D O I
10.1080/14786430902988757
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The description of non-steady-state grain growth or precipitate coarsening using object radius distribution functions with multiple time-dependent parameters (distribution concept) appears promising. The present paper deals with the simplest case of non-steady-state distribution functions with two parameters - the first one scaling the object radius, the second determining the shape of the distribution function. The main question concerns the physical basis behind the evolution of these two parameters. The principle of maximum dissipation has proven to be a suitable tool to derive the evolution equations. Semi-analytical solutions for the evolving parameters of arbitrary two-parameter distribution functions can be developed. As examples, Kirkaldy- Lind Weibull-type distribution functions are investigated. It is shown that the parameters of the Kirkaldy distribution function are not independent and, thus, the general non-steady-state analysis fails. For a Weibull-type distribution function, nearly exact and simple analytical expressions for both parameters are presented and discussed for the grain growth and coarsening cases.
引用
收藏
页码:1425 / 1438
页数:14
相关论文
共 50 条
  • [31] Non-Steady-State Symmetry Breaking Growth of Multilayered SnSe2 Nanoplates
    Ran, Yutong
    Zhao, Runni
    Meng, Chen
    Shang, Nianze
    Sun, Shuo
    Liu, Kaihui
    Zhu, Hongwei
    SMALL, 2024, 20 (04)
  • [32] Difference of diffusivities in zeolites measured by the non-steady-state and the steady-state methods
    Liang, WG
    Chen, SY
    Peng, SY
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (05) : 1882 - 1886
  • [33] Active sites and the non-steady-state dissolution of hematite
    Samson, SD
    Eggleston, CM
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (19) : 2871 - 2875
  • [34] Reliability of Non-Steady-State Electrophoretic Migration Test
    Minagawa, H.
    Nakamura, E.
    Kawaai, K.
    Miyazato, S.
    Kato, Y.
    Yamaguchi, T.
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 223 - +
  • [35] Non-steady-state photoelectromotive force in an AlN crystal
    Bryushinin, M.
    Kulikov, V.
    Mokhov, E.
    Nagalyuk, S.
    Sokolov, I.
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [36] TOOL LIFE IN NON-STEADY-STATE CUTTING CONDITIONS
    SOLOMENTSEV, YM
    SOVIET ENGINEERING RESEARCH, 1981, 1 (05): : 80 - 81
  • [37] COMPUTER CONTROL OF A NON-STEADY-STATE EXTRUSION PROCESS
    BOLDER, G
    MENGES, G
    PLASTICS ENGINEERING, 1984, 40 (03) : 50 - 50
  • [38] DISTRIBUTED AND NON-STEADY-STATE MODELING OF AN AIR COOLER
    WANG, H
    TOUBER, S
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1991, 14 (02): : 98 - 111
  • [39] EFFICIENT CUTTING IN NON-STEADY-STATE CONDITIONS.
    Poduraev, V.N.
    Machines & Tooling (English translation of Stanki i Instrument), 1976, 47 (03): : 34 - 36
  • [40] Active sites and the non-steady-state dissolution of hematite
    Samson, Sherry D.
    Eggleston, Carrick M.
    Environmental Science and Technology, 1998, 32 (19): : 2871 - 2875