Analysis of non-steady-state distribution functions for grain growth and coarsening

被引:4
|
作者
Fischer, F. D. [1 ]
Svoboda, J. [2 ]
Gamsjaeger, E. [1 ]
机构
[1] Univ Leoben, Inst Mech, A-8700 Leoben, Austria
[2] Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic
关键词
grain growth; coarsening; thermodynamics; modeling; distribution concept; POLYCRYSTALLINE MICRO STRUCTURES; AUTOMATED-ANALYSIS; SIMULATION; FRAMEWORK; MODEL;
D O I
10.1080/14786430902988757
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The description of non-steady-state grain growth or precipitate coarsening using object radius distribution functions with multiple time-dependent parameters (distribution concept) appears promising. The present paper deals with the simplest case of non-steady-state distribution functions with two parameters - the first one scaling the object radius, the second determining the shape of the distribution function. The main question concerns the physical basis behind the evolution of these two parameters. The principle of maximum dissipation has proven to be a suitable tool to derive the evolution equations. Semi-analytical solutions for the evolving parameters of arbitrary two-parameter distribution functions can be developed. As examples, Kirkaldy- Lind Weibull-type distribution functions are investigated. It is shown that the parameters of the Kirkaldy distribution function are not independent and, thus, the general non-steady-state analysis fails. For a Weibull-type distribution function, nearly exact and simple analytical expressions for both parameters are presented and discussed for the grain growth and coarsening cases.
引用
收藏
页码:1425 / 1438
页数:14
相关论文
共 50 条
  • [1] ON THE NON-STEADY-STATE GROWTH OF LAMELLAR EUTECTICS
    LIU, J
    MATERIALS LETTERS, 1991, 10 (11-12) : 521 - 524
  • [2] The Budyko functions under non-steady-state conditions
    Moussa, Roger
    Lhomme, Jean-Paul
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (12) : 4867 - 4879
  • [3] NON-STEADY-STATE ANALYSIS OF CELLULAR DEVELOPMENT
    WHELDON, TE
    KIRK, J
    ORR, JS
    CELL AND TISSUE KINETICS, 1974, 7 (02): : 173 - 179
  • [4] NON-STEADY-STATE MICROCALORIMETER
    GRNO, L
    PODHORANSKY, P
    GROCH, J
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1991, 40 (02) : 366 - 367
  • [5] NON-STEADY-STATE NUCLEATION
    COURTNEY, WG
    JOURNAL OF CHEMICAL PHYSICS, 1962, 36 (08): : 2009 - &
  • [6] From distribution functions to evolution equations for grain growth and coarsening
    Fischer, F. D.
    Svoboda, J.
    Gamsjaeger, E.
    Oberaigner, E. R.
    ACTA MATERIALIA, 2008, 56 (19) : 5395 - 5400
  • [7] SEMIPARAMETRIC ANALYSIS OF NON-STEADY-STATE PHARMACODYNAMIC DATA
    VEROTTA, D
    SHEINER, LB
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1991, 19 (06): : 691 - 712
  • [8] Analysis of non-steady-state current at hemispheroidal ultramicroelectrodes
    Rajendran, L
    ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (07) : 531 - 534
  • [9] Materials for a Non-Steady-State World
    Schafrik, Robert E.
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2016, 47 (03): : 1505 - 1515
  • [10] Materials for a Non-Steady-State World
    Schafrik, Robert E.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (06): : 2539 - 2549