Computing properties of materials based on the Ginzburg-Landau equation

被引:1
|
作者
Oskoee, Ehsan Nedaaee [1 ]
机构
[1] IASBS, Zanjan, Iran
关键词
D O I
10.1109/MCSE.2007.28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Ginzburg-Landau equation has many applications, but it has no analytical solution, and thus must be solved numerically. When combined with other equations to model very complex phenomena, the solution requires advanced computational techniques.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [31] TRANSITIONS TO CHAOS IN THE GINZBURG-LANDAU EQUATION
    MOON, HT
    HUERRE, P
    REDEKOPP, LG
    PHYSICA D, 1983, 7 (1-3): : 135 - 150
  • [32] POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    GRAHAM, R
    TEL, T
    EUROPHYSICS LETTERS, 1990, 13 (08): : 715 - 720
  • [33] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [34] Remarks on an Equation of the Ginzburg-Landau Type
    Wang, Bei
    FILOMAT, 2019, 33 (18) : 5913 - 5917
  • [35] Dynamic bifurcation of the Ginzburg-Landau equation
    Ma, T
    Park, J
    Wang, SH
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2004, 3 (04): : 620 - 635
  • [36] NEW PROPERTIES OF QUASIPERIODIC SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    Akhromeyeva, Tatiana S.
    Malinetskii, George G.
    Potapov, Alexey B.
    Tsertsvadze, George Z.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 955 - 972
  • [37] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions
    Bethuel, F
    Brezis, H
    Orlandi, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) : 432 - 520
  • [38] Vortex dynamics for the Ginzburg-Landau wave equation
    R.L. Jerrard
    Calculus of Variations and Partial Differential Equations, 1999, 9 : 1 - 30
  • [39] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [40] ON THE NUMBER OF DETERMINING NODES FOR THE GINZBURG-LANDAU EQUATION
    KUKAVICA, I
    NONLINEARITY, 1992, 5 (05) : 997 - 1006