Recursive parametric tests for multichannel adaptive signal detection

被引:0
|
作者
Sohn, Kwang June [1 ]
Li, Hongbin [1 ]
Himed, Braham [2 ]
机构
[1] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[2] Labs Inc, Reston, VA 20191 USA
关键词
multichannel signal detection; space-time adaptive processing (STAP); multichannel Levinson algorithm; Rao test; generalized likelihood ratio test (GLRT);
D O I
10.1109/DSPWS.2006.265474
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The parametric Rao and generalized likelihood ratio test (GLRT) detectors, recently developed by exploiting a multichannel autoregressive (AR) model for the disturbance, has been shown to perform well with very limited or no training data. The AR model order, however, should be estimated by some model order selection technique. Standard non-recursive implementation of the parametric detectors is computationally intensive, since the parameters have to be estimated for each possible model order. This paper presents recursive versions of the parametric detectors using the multichannel Levinson algorithm, which is used to recursively solve the multichannel Yule-Walker equations and find parameter estimates used by these detectors. Estimation of the AR model order can also be naturally integrated since the multichannel Levinson algorithm yields parameter estimates at every recursion (i.e., for every AR model order). Numerical results show that the proposed recursive parametric tests that assume no knowledge about the model order perform quite close to the corresponding non-recursive parametric detectors at reduced computational complexity, even though the latter requires exact knowledge of the model order.
引用
收藏
页码:500 / 505
页数:6
相关论文
共 50 条
  • [21] Multichannel radar adaptive signal detection in interference and structure nonhomogeneity
    Liu, Weijian
    Han, Hui
    Liu, Jun
    Li, Hongli
    Li, Kai
    Wang, Yong-Liang
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (11)
  • [22] Multichannel adaptive signal detection: basic theory and literature review
    Weijian Liu
    Jun Liu
    Chengpeng Hao
    Yongchan Gao
    Yong-Liang Wang
    Science China Information Sciences, 2022, 65
  • [23] Multichannel adaptive signal detection: basic theory and literature review
    Liu, Weijian
    Liu, Jun
    Hao, Chengpeng
    Gao, Yongchan
    Wang, Yong-Liang
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (02)
  • [24] Multichannel radar adaptive signal detection in interference and structure nonhomogeneity
    Weijian Liu
    Hui Han
    Jun Liu
    Hongli Li
    Kai Li
    Yong-Liang Wang
    Science China Information Sciences, 2017, 60
  • [25] Multichannel adaptive signal detection: basic theory and literature review
    Weijian LIU
    Jun LIU
    Chengpeng HAO
    Yongchan GAO
    Yong-Liang WANG
    Science China(Information Sciences), 2022, 65 (02) : 5 - 44
  • [26] Adaptive Detection of a Stochastic Signal under Parametric a priori Uncertainty
    A. P. Trifonov
    A. V. Zakharov
    E. V. Pronyaev
    Problems of Information Transmission, 2002, 38 (3) : 203 - 217
  • [27] Adaptive detection of a stochastic signal under parametric a priori uncertainty
    Trifonov, A.P.
    Zakharov, A.V.
    Pronyaev, E.V.
    Problemy Peredachi Informatsii, 2002, 38 (03): : 45 - 61
  • [28] Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection
    Sun, Mengru
    Liu, Weijian
    Liu, Jun
    Hao, Chengpeng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 117 - 131
  • [29] MULTICHANNEL ADAPTIVE FILTERING FOR SIGNAL ENHANCEMENT
    FERRARA, ER
    WIDROW, B
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (03): : 766 - 770
  • [30] Adaptive filters and multichannel signal processing
    Venetsanopoulos, AN
    Plataniotis, KN
    IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, : 147 - 152